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Generative Adversarial Nets
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T'he GAN algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our

experiments.
for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z"), ..., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z‘!,... 2™} from data generating distribution
Pdata()-

e Update the discriminator by ascending its stochastic gradient:

Vo Y- [los D (29) +10g (1- D (6 (=0)))]

=1
end for

e Sample minibatch of m noise samples {z'") ... z{™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

vgg% glog (1-D(6(=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




(GANSs

oooooooooo
-——- --u.--'_. --.-.--.'

. y .
. » .
. | .
* . ‘.

.-
......

. L
'
., ‘.'

. 7 T N




Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c¢) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)
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+ Pros

* No inference required or approximations like
negative phase of RBMs

* Model learns the parameters of the distribution and
hence does not memorize data.

+ Cons

« No explicit expression for the generative distribution.



Deep Learning for Text



Learning Word Representations
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A simple CBOW model

Input layer Hidden layer Output layer
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Figure 1: A simple CBOW model with only one word in the context




Full CBOW Model

Hidden layer/'joutput layer
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The Two-Models

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

SUM /
> w(t) w(t) —>
w(t+1) x w(t+1)
w(t+2) w(t+2)

CBOW Skip-gram



The Skip Gram Model

a = Softmax
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Example given to Skip Gram

Source Text

quick

brown |fox jumps

The

brown |fox | jumps

The

quick- fox|jumps

NET

VY

OVCLr

The

quick

brown - jumps

over

the

the

the

the

lazy dog.

lazy dog.

razy o

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)



Skip Gram Model Detailed
idden Layer ord Vector
Vl;lleight I\I;Ia»':rix —— L‘c/:;kupVTa:)Ie!

300 neurons 300 features

10,000 words
10,000 words




Skip Gram Model Detailed
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First Hidden Layer Output Gives word embeddings after training



Interpreting Word Embeddings

Word Cosine distance

norway 2.760124
denmark 0.715460
finland 0.620022
switzerland 9.588132
belgium 0.585835
netherlands 0.574631
iceland 0.562368
estonia 0.547621
slovenia 0.531408

Neighbors found for the word “Sweden”



Visualizing Word Embeddings
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