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Deep Neural Networks 30-10-2019
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Summary so far...

- Neural networks as discriminative classifiers
« Need for hidden layer

« Choice of non-linearities and target functions
 Estimating posterior probabilities with NNs

- Parameter learning with back propagation.
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Need for Depth
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Need ror Deep Networks

Modeling complex real world data like speech, image, text
- Single hidden layer networks are too restrictive.
+ Needs large number of units in the hidden layer and
trained with large amounts of data.
+ Not generalizable enough.
Networks with multiple hidden layers - deep networks
(Open questions till 2005)
 Are these networks trainable ?

« How can we initialize such networks ?

@ - Will these generalize well or over train ?



Deep Networks Intuition

Neural networks with multiple hidden layers - Deep

networks [Hinton, 2006}
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Deep Networks Intuition

Neural networks with multiple hidden layers - Deep
networks
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Deep Networks

50X BOOST IN DEEP LEARNING
IN 3 YEARS
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- Are these networks trainable ?
- Advances in computation and processing
» Graphical processing units (GPUs) performing multiple

parallel multiply accumulate operations.

ﬁ - Large amounts of supervised data sets



Deep Networks

- Will the networks generalize with deep networks

- DNNs are quite data hungry and performance
improves by increasing the data.
- Generalization problem is tackled by providing
training data from all possible conditions.
- Many artificial data augmentation methods have
been successfully deployed
 Providing the state-of-art performance in several

real world applications.

B

Established



Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system.

Cartesian Coordinates Polar Coordinates




Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system.
- Extract factors that enable classification while
suppressing factors which are susceptible to noise.

- Finding the right representation for real world applications -
substantially challenging.
- Deep learning solution - build complex representations
from simpler representations.
- The dependencies between these hierarchical
representations are refined by the target.
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Representation Learning in Deep Networks
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On the Number of Linear Regions of
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Deep Learning

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep
model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left
panel. Filled markers indicate errors made by the shallow model.
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Deep Learning
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Figure 2: (a) Space folding of 2-D Euclidean space along the two axes. (b) An illustration of how the
top-level partitioning (on the right) is replicated to the original input space (left). (c) Identification
of regions across the layers of a deep model.
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Deep Learning

Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially
identify symmetries in the boundary that i1t needs to learn.
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