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Bias and Variance In Neural Network Training

(bias)? = 5 [ {El(x)) - (tx)) () dx

variance = % / Epl{y(x) — Eply(x)]}p(x) dx.
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Weight Decay Based Regularization




Weight Decay Regularization
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Regularization Effect on Learning
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Karly Stopping

validation Most Popular in Practice

training




Neural Networks - Summary

+ Details of Architecture

* Computation of gradient using back propagation.
“ Error function and output layer activation

* Neural networks estimate posterior probabilities

“ Learning in Neural networks

* Gradient descent - Properties

+ (Generalization of Neural Networks



Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe Christian Szegedy
Google Inc., sioffe@google.com Google Inc., szegedy @google.com



Ettect of Batch Normalization
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Figure 1: (a) The test accuracy of the MNIST network
trained with and without Batch Normalization, vs. the
number of training steps. Batch Normalization helps the
network train faster and achieve higher accuracy. (b,
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85}t/
percentiles. Batch Normalization makes the distribution
more stable and reduces the internal covariate shift.



Dropout Strategy in Neural Network Training

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISHQCS. TORONTO.EDU
Geoffrey Hinton HINTON@CS.TORONTO.EDU
Alex Krizhevsky KRIZQCS. TORONTO.EDU
Ilya Sutskever ILYAQCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU
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Dropouts in Neural Networks
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Dropout in Training and Test

PW
Present with Always

probability p present
(a) At training time (b) At test time



Dropout Application

(A

(b) Dropout network

a) Standard network

Figure 3: Comparison of the basic operations of a standard and dropout network.



Effect of Dropouts

Classification Error %
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Figure 4: Test error for different architectures

with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.



