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SVHN dataset
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Understanding Deep Networks
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Table 1. Test Set Accuracies for our Two Architectures

IO S N R [ o

— Model | \pp CNN | State-of-the-art
MNIST | 98.52% | 99.62% | 99.79% [47]
SVHN 77.38% | 93.76% | 98.08% [23]

CIFAR-10 | 5291% | 79.19% | 91.78% [23]
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A Vo of the neural network.

cdass 5 cdass 5 class 3
predicion: 5 prediction: 5 predcion: 5

Fig. 3. Projection of the last MLP hidden layer activations, MNIST test

subset. a) Before training (NH: 83.78%). b) After training (NH: 98.36%,
AC: 99.15%). Inset shows classification of visual outliers.
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20.94%). Poor class separation is visible.

Fig. 4. Projection of the last MLP hidden layer activations before training,

SVHN test subset (NH

Fig. 5. Projection of the MLP hidden layer activations after training,
SVHN test subset. a) First hidden layer (NH: 52.78%). b) Last hidden

layer (NH: 67%). ‘
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Fig. 9. Projection of last CNN hidden layer activations after training,
CIFAR-10 test subset (NH: 53.43%, AC: 78.7%).
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Fig. 11. Inter-epoch evolution, last CNN hidden layer, epochs 0-100, in
steps of 20, MNIST test subset. Brighter trail parts show later epochs.
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Fig. 12. Activation and neuron projections of last CNN hidden layer acti-
vations before and after training, MNIST test subset. Neuron projection
colors show the neurons’ power to discriminate class 8 vs rest.



Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science,
New York University, USA
{zeiler,fergus}@cs.nyu.edu
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Representation Learning in Deep Networks
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UNDERSTANDING HOW DEEP BELIEF NETWORKS PERFORM ACOUSTIC MODELLING
Abdel-rahman Mohamed, Geoffrey Hinton, and Gerald Penn

Department of Computer Science, University of Toronto



Speech Recognition

* Map the features to phone class. Using phone labelled data.
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* (Classical machine learning - train a classifier on speech training data
that maps to the target phoneme class.
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Back to Speech Recognition
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Unders

tanding DNNSs for Speech
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Understanding DNNs for Speech

2-D projection of 2nd layer DNN
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Understanding DNNs for Speech
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