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Decision Theory (PRML Chap. 1.5)

# Decision Theory
“ Inference problem
* Finding the joint density p(x,t)
“ Decision problem

* Using the inference to make the
classification or regression decision



Decision Problem - Classification

* Minimizing the mis-classification error

# Decision based on maximum posteriors
argmaz; p(C;|x)

+ Loss matrix

* Minimizing the expected loss

argmax Z L ;p(Ck|x)
k



Visualizing the Max. Posterior Classifier
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Approaches for Inference and Decision

[. Finding the joint density from the data.

p(Crlx) o p(x|Ck)p(Ck)
[I. Finding the posteriors directly.

[TI. Using discriminant functions for classification.
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Advantage of Posteriors

o _PCil) p(Ca|x)

g

0.0

- — =
reject region



Decision Rule for Regression

* Minimum mean square error 10ss

* Solution is conditional expectation.



Generative Modeling
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Non-parametric Modeling

* Non-parametric models do not specity an apriori set of
parameters to model the distribution. Example - Histogram
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The density is not smooth and has block like shape.



Non-parametric Modeling

* Non-parametric models do not specify an apriori set of parameters to model the
distribution.

* Example - Kernel Density Estimators

B Histogram
—— Kernel Density

Kernel is a smooth function which obeys certain properties



Non-parametric Modeling

* Non-parametric methods are dependent on number
of data points

* Estimation is difficult for large datasets.

* Likelihood computation and model comparisons
are hard.

e [ imited use in classifiers



Parametric Models (Chap 2 PRML)

« Collection of probability distributions which are described by a
finite dimensional parameter set

8 (0.0: 0) P=1FP)

* Examples -

e Poisson Distribution Dy ( ]) - % e—)\
 Bernoulli Distribution D
p(x|p) = | | 1 (1 — ps)™
=1

e (Gaussian Distribution
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GGaussian Distribution

Surface plot of p(x,, X))

Points of equal probability lie on on contour
Diagonal Gaussian with Identical Variance



GGaussian Distribution

Contour plot of p(x,, x.)

Surfacs plot of p(x,. x.)

Diagonal Gaussian with different variance



GGaussian Distribution

Surface plot of pix,. x,) 4

Full covariance Gaussian distribution
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GGaussian Distribution
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Finding the parameters of the Model

The Gaussian model has the following parameters
0 = (p, %)

Total number of parameters to be learned for D dimensional
datais D% + D

Given N data points{x;}:¥ .how do we estimate the
parameters of model.

Several criteria can be used

The most popular method is the maximum likelihood
estimation (MLE).



Define the likelihood function as L(6) = | | p(x;|6)
=1
The maximum likelihood estimator (MLE) is

8 =arg max L(6)

The MLE satisfies nice properties like

- Consistency (covergence to true value)




For the Gaussian distribution

1
p(x|p, ) = exps — = (x — 'S (x ~ )
D‘Z‘ { 2 }




