
E9 205 Machine Learning for Signal Processing

28-08-2019
ML, MAP, MMSE and Gaussian 
Modeling

Instructor - Sriram Ganapathy (sriram@ee.iisc.ernet.in)

Teaching Assistant - Prachi Singh (prachisingh@iisc.ac.in). 

mailto:sriram@ee.iisc.ernet
mailto:prachisingh@iisc.ac.in


Decision Theory (PRML Chap. 1.5)

❖ Decision Theory 

❖ Inference problem

❖ Finding the joint density 

❖ Decision problem

❖ Using the inference to make the 
classification or regression decision



Decision Problem - Classification

❖ Minimizing the mis-classification error

❖ Decision based on maximum posteriors

❖ Loss matrix 

❖ Minimizing the expected loss 



Visualizing the Max. Posterior Classifier



Approaches for Inference and Decision

I. Finding the joint density from the data.

II. Finding the posteriors directly.

III. Using discriminant functions for classification.
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Advantage of Posteriors



Decision Rule for Regression

❖ Minimum mean square error loss

❖ Solution is conditional expectation.



Generative Modeling

Classifiers
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Non-parametric Modeling
• Non-parametric models do not specify an apriori set of 

parameters to model the distribution. Example - Histogram 
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The density is not smooth and has block like shape.



Non-parametric Modeling
• Non-parametric models do not specify an apriori set of parameters to model the 

distribution.

• Example - Kernel Density Estimators 

Histogram
Kernel Density

Kernel is a smooth function which obeys certain properties



Non-parametric Modeling

• Non-parametric methods are dependent on number 
of data points

• Estimation is difficult for large datasets.

• Likelihood computation and model comparisons 
are hard.

• Limited use in classifiers



❖ Collection of probability distributions which are described by a 
finite dimensional parameter set 

• Examples -

• Poisson Distribution

• Bernoulli Distribution

• Gaussian Distribution

Parametric Models (Chap 2 PRML)



Gaussian Distribution

One of most widely used and well studied model

Points of equal probability lie on on contour
Diagonal Gaussian with Identical Variance



Gaussian Distribution

Insights into two dimensional Gaussian distribution

Diagonal Gaussian with different variance



Gaussian Distribution

Insights into two dimensional Gaussian Distribution

Full covariance Gaussian distribution



Gaussian Distribution

Fitting the data with a Gaussian Model



Finding the parameters of the Model
❖ The Gaussian model has the following parameters

❖ Total number of parameters to be learned for D dimensional 
data is 

❖ Given N data points             how do we estimate the 
parameters of model.

❖ Several criteria can be used

❖ The most popular method is the maximum likelihood 
estimation (MLE).



MLE
Define the likelihood function as 

The maximum likelihood estimator (MLE) is 

The MLE satisfies nice properties like

- Consistency (covergence to true value)

- Efficiency (has the least Mean squared error).



MLE
For the Gaussian distribution 

To estimate the parameters


