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Introduction to
Neural Network Models
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Perceptron Algorithm

Perceptron Model [McCulloch, 1943, Rosenblatt, 1957}

Targets are binary classes [-1,1] | * « %",

What if the data is not
linearly separable




Mulu-layer Perceptron

Multi-layer Perceptron [Hopfield, 1982}
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Neural Networks

Multi-layer Perceptron [Hopfield, 1982]
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 Useful for classifying non-linear data boundaries -
non-linear class separation can be realized given

g enough data.




Neural Networks

Types of Non-linearities ¢
tanh sigmoid Relu

14 S ——
-—

| el ) | | J
-0 -4 -2 0 2 4 0

Cost-Function

Mean Square Error Cross Entropy
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Y: are the desired outputs



Learning Posterior Probabilities with NNs

Choice of target function 1)

« Softmax function for classification

h(vs) = Ze ev

 Softmax produces positive values that sum to 1
 Allows the interpretation of outputs as posterior
probabilities




Parameter Learning
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- Error function for entire data

Typical Error Surface as a
function of parameters
(weights and biases)




Parameter Learning

Error surface close to a local optima

Non-linear nature of error
function
« Move in the reverse
direction of the gradient
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Parameter Learning

Solving a non-convex
optimization.

Iterative solution.

Depends on the initialization.
Convergence to a local
optima.

Judicious choice of learning
rate

loss

low learning rate

high learning rate

good learning rate

epoch



