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Define the margin 
of a linear classifier 
as the width that 
the boundary could 
be increased by 
before hitting a 
datapoint.
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Maximum Margin

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the simplest 
kind of SVM 
(Called an LSVM)

Linear SVM

Support Vectors 
are those data 
points that the 
margin pushes up 
against

1. Maximizing the margin is good 
according to intuition 

2. Implies that only support vectors are 
important; other training examples are 
ignorable.

3. Empirically it works very very well.
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Non-linear SVMs
■ Datasets that are linearly separable with some noise work 

out great:

■ But what are we going to do if the dataset is just too hard? 

■ How about… mapping data to a higher-dimensional 
space:
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Non-linear SVMs:  Feature spaces
■ General idea:   the original input space can always be 

mapped to some higher-dimensional feature space where 
the training set is separable:

Φ:  x → φ(x)



The “Kernel Trick”
■ The linear classifier relies on dot product between vectors k(xi,xj)=xiTxj

■ If every data point is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the dot product becomes:

                              k(xi,xj)= φ(xi) Tφ(xj)
■ A kernel function is some function that corresponds to an inner product in 

some expanded feature space.
■ Example: 

2-dimensional vectors x=[x1   x2];  let k(xi,xj)=(1 + xiTxj)2,

Need to show that K(xi,xj)= φ(xi) Tφ(xj):
 k(xi,xj)=(1 + xiTxj)2,

                           = 1+ xi12xj12 + 2 xi1xj1 xi2xj2+ xi22xj22 + 2xi1xj1 + 2xi2xj2

      = [1  xi12  √2 xi1xi2   xi22  √2xi1  √2xi2]T [1  xj12  √2 xj1xj2   xj22  √2xj1  √2xj2] 
      = φ(xi) Tφ(xj),    where φ(x) =  [1  x12  √2 x1x2   x22   √2x1  √2x2]



What Functions are Kernels?
■ For many functions k(xi,xj) checking that 

                k(xi,xj)= φ(xi) Tφ(xj) can be cumbersome. 
■ Mercer’s theorem:  Every semi-positive definite 

symmetric function is a kernel
■ Semi-positive definite symmetric functions correspond 

to a semi-positive definite symmetric Gram matrix:

k(x1,x1) k(x1,x2) k(x1,x3) … k(x1,xN)
k(x2,x1) k(x2,x2) k(x2,x3) k(x2,xN)
… … … … … 
k(xN,x1) k(xN,x2) k(xN,x3) … k(xN,xN)

K   =



Examples of  Kernel Functions
■ Linear: k(xi,xj)= xi Txj

■ Polynomial of power p: k(xi,xj)= (1+ xi Txj)p

■ Gaussian (radial-basis function network):

■ Sigmoid: k(xi,xj)= tanh(β0xi Txj + β1)



SVM Formulation
❖ Goal -  1) Correctly classify all training data

             
2) Define the Margin 

3) Maximize  the Margin

                     
❖ Equivalently written as
                                                           such that 



Solving the Optimization Problem
■ Need to optimize a quadratic function subject to linear constraints.
■ Quadratic optimization problems are a well-known class of 

mathematical programming problems, and many (rather intricate) 
algorithms exist for solving them. 

■ The solution involves constructing a dual problem where a Lagrange 
multiplier           is associated with every constraint in the primary 
problem:

■ The dual problem in this case is maximized

Find                        such that 

and                        ,

maximized



■ The solution has the form: 

■ Each non-zero an indicates that corresponding xn is a 
support vector. Let S denote the set of support vectors.  

■ And the classifying function will have the form:

Solving the Optimization Problem



Solving the Optimization Problem



Visualizing Gaussian Kernel SVM



■ The classes are not linearly separable - Introducing slack 
variables 

■ Slack variables are non-negative
■ They are defined using

■ The upper bound on mis-classification 

■ The cost function to be optimized in this case 

Overlapping class boundaries 



SVM Formulation - overlapping classes

■ Formulation very similar to previous case except for 
additional constraints 

■ Solved using the dual formulation - sequential minimal 
optimization algorithm 

■ Final classifier is based on the sign of 



Overlapping class boundaries 


