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Basics of Information Theory

- Entropy of distribution
- KL divergence
-+ Jensen’s inequality

- Expectation Maximization Algorithm for MLE



Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is defined as

p(x|®) = Zakp (x|0%)

1 1 rg—1 \
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The weighting coefficients have the property

K
E A — 1
k=1




Gaussian Mixture Models

* Properties of GMM

- Can model multi-modal
data.

- ldentify data clusters.

-+ Can model arbitrarily
complex data distributions

The set of parameters for the model are

K
@k — {Oék, 9k}k:1 Ok — {u'ka Ek}
? The number of parametersis KD? + KD + K




MLE for GMM

+ The log-likelihood function over the entire data in this
case will have a logarithm of a summation

N K
log L(®) = Zlog (Zakp(xi|9k))

- Solving for the optimal parameters using MLE for
GMM is not straight forward.

- Resort to the Expectation Maximization (EM) algorithm




Basics of Information
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- Entropy of distribution
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Expectation Maximization Algorithm

- Iterative procedure.

- Assume the existence of hidden variable z;
associated with each data sample x;

- Let the current estimate (at iteration n) be O™
Define the Q function as

Q(®7 @n) — EZ\X,G)” [log(P(Xv Z‘@)]
= ) log(P(X,z|®))P(z|X,0")




Expectation Maximization Algorithm

- It can be proven that if we choose
O™ = arg max Q(O,0")
then L(@”“) > L(O")

- In many cases, finding the maximum for the Q
function may be easier than likelihood function
w.r.t. the parameters.

- Solution is dependent on finding a good choice of
the hidden variables which eases the computation

?- lteratively improve the log-likelihood function.




EM Algorithm Summary

- Initialize with a set of model parameters (n=1)
- Compute the conditional expectation (E-step)
Ez|X,®” [log(P(Xv Z‘(-))]

- Maximize the conditional expectation w.r.t.
parameter. (M-step) (n = n+1)

- Check for convergence

- G0 back to E-step if model has not converged.




EM Algorithm for GMM

- The hidden variables z; = [ will be the index of the
mixture component which generated x;

- Re-estimation formulae
1 N
a?’ew — N Zp(ﬁxz, @g)
1—1

'u?ew _ Z?J,\_L.l ‘/Bip(ami? @g)
vy p(f@s, ©9)

E?ew _ i]il p(@la:z-, @g)(m’t — M?ew)(mi - uzzew)T
711\;1 p(ﬁla:z-,@g)




EM Algorithm for GMM

| N P(A)=0.6 o

P(B)=04 e P(B) = 0.4 . T

® ® .P(A)=02 ® ® .P(A)=02
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EM Algorithm for GMM

ANEMIA PATIENTS AND CONTROLS
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Cadez, Igor V., et al. "Hierarchical models for screening of iron deficiency anemia." ICML. 1999.
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EM Algorithm for GMM

EM ITERATION 1
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EM Algorithm for GMM

EM ITERATION 3
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EM Algorithm for GMM

EM ITERATION 5
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EM Algorithm for GMM

EM ITERATION 10
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EM Algorithm for GMM

EM ITERATION 15
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EM Algorithm for GMM

EM ITERATION 25
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EM Algorithm for GMM

ANEMIA DATA WITH LABELS
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K-means Algorithm for Initialization
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Other Considerations

- |Initialization - random or k-means

- Number of Gaussians
- Type of Covariance matrix

+ Spherical covariance

_Less precise.
-Very efficient to compute.




Other Considerations

- |Initialization - random or k-means

- Number of Gaussians
- Type of Covariance matrix

- Diagonal covariance

-More precise.
L -Efficient to compute.




Other Considerations

- |Initialization - random or k-means

- Number of Gaussians
- Type of Covariance matrix

- Full covariance

-Very precise.
-Less efficient to compute.




