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Feature Extraction

+ Feature Extraction
* Using measured data to build desirable values.

+ Attributes of the data that are informative and non-
redundant.

+ Resilience to noise/ artifacts.

* Facilitating subsequent learning algorithm.




Feature Extraction

“ Representation Problem

Cartesian Coordinates Polar Coordinates
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Feature Extraction

Scope for this course

I. Feature Extraction in Text.
[I. Feature Extraction in Speech and Audio signals.

[TI. Feature Extraction for Images.




T'ext Modeling - Introduction to NLP

+ Definitions
+ Documents, Corpora, Tokens (Terms)
« Term Frequency (TF)
# Collection Frequency (CF)
* Document Frequency (DF)
+ TF-IDF

* Bag of words model



T'ext Processing



Example [Manning and Schutze, 2006]

Word cf df
try 10422 | 8760
insurance | 10440 | 3997

» Figure 6.7 Collection frequency (cf) and document frequency (df) behave differ-
ently, as in this example from the Reuters collection.

term df; | 1df;
car 18,165 | 1.65
auto 6723 | 2.08
insurance | 19,241 | 1.62
best 25,235 | 1.5

» Figure 6.8 Example of idf values. Here we give the idf’s of terms with various
frequencies in the Reuters collection of 806,791 documents.

https:/ /nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf



Perplexity
* Measuring the goodness of language modeling

1

PP(W) = P(wiwy...wy) ¥

P(wiwy...wy)

On a Wall-street Journal Corpus

Unigram Bigram Trigram
Perplexity 962 170 109

https:/ / web.stanford.edu / ~jurafsky /slp3/4.pdf



Speech and Audio Processing



Speech and Audio

Speech/ Audio - 1D signals

* (Generated by pressure variations producing regions
of high pressure and low pressure.

* Travels through a medium of propagation (like air,
water etc).

* Human sensory organ - eardrum.
* Converting pressure variations to electrical signals.

* Action mimicked by a microphone.




Sound waves in a computer

* Analog continuous signal from the microphone
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# Discretized in time - sampling.

* Digitized in values - quantization.

E http:/ /mlsp.cs.cmu.edu/ courses/ fall2014 /lectures / slides / Class1.Introduction.pdf

Established



Why do we need time varying Fourier Transform
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* When the signal properties change in time
« DFT will only capture the average spectral character

* Short-window analysis can indicate the change in
spectrum.



Summary of STE'T Properties
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http://en.wikipedia.org/wiki/Window_function



Narrowband versus Wideband

Short windows - poor frequency resolution - wideband spectrogram

Long windows - poor time resolution - narrowband spectrogram
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Narrowband versus Wideband

= Can illustrate time-frequency tradeoff
on the time-frequency plane:

T | | disks show ‘blurring’

ol O due to window length;

o] ' R | & area of disk is constant
o | — Uncertainty principle:
0‘;: ﬁ /\\ (if (i]‘ = /(

= Alternate tilings
of time-freq:

Dan Ellis, “STFT Tutorial”
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Dan Ellis, “STFT Tutorial”

Spectrogram of Real Sounds
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Narrowband versus Wideband
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Mel Frequency Cepstral Coellicients

MFCC

« MFCC coefficients model the spectral energy
Distribution in a perceptually meaningful way
 Why do we need?

- Automatic speech recogonition
- Speaker Identification
— Audio classification



Mel Frequency Cepstral Coetlicients

* Implementation steps
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Mel Frequency Cepstral Coetlicients
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Mel Frequency Cepstral Coetlicients

Frequency




Image Processing



Image Capture and Representation

Gray Scale Image

100




Image Capture and Representation

Histogram
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Gray Levels

« Histogram captures the distribution of gray levels in the image.
« How frequently each gray level occurs in the image



Image Filtering

* Image filtering: compute function of local
neighborhood at each position

Really important!

- Enhance images

- Denoise, resize, increase contrast, etc.
- Extract information from images

- Texture, edges, distinctive points, etc.
- Detect patterns

- Template matching



Image Filtering

Given function f(x, y)

Iy S0~ 1080

y ™ = /(x)

Of(x,y)

Gradient vector Vi(x,y)= 5f(a;i Y) B Lf }

R A O )
dx ]

= f'(x)

Gradient magnitude ‘Vf(x, y)\ = \/fx2 + f;

d /
Gradient direction 6 =tan" % {ll_i - f(X) - f(x - 1) — f (X)



Edge Detection Example




Convolution Operation in Images

Convolution

/ =1Image
h = Kernel

f*h= ;Zf(k,l)h(— k,~1)
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