E9 205 Machine Learning for Signal Procesing

Support Vector Machines

12-10-2018

Linear Classifiers

denotes +1
denotes -1

Linear Classifiers

$$
\mathbf{x}-\mathbf{f}=\mathbf{y}_{f(\mathbf{x} ; \mathbf{w}, b)=\operatorname{sgn}\left(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x})+b\right)}
$$

- denotes +1
${ }^{\circ}$ denotes -1

How would you classify this data?

Linear Classifiers

Linear Classifiers

Linear Classifiers

Linear Classifiers

- denotes +1
${ }^{\circ}$ denotes -1

Linear Classifiers

$x \longrightarrow f \longrightarrow y$ est

Maximum Margin

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

" General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on dot product between vectors $k\left(x_{i}, x_{j}\right)=x_{i}{ }^{T} x_{j}$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \rightarrow \phi(x)$, the dot product becomes:

$$
k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\phi\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{\mathbf{j}}\right)
$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors $\mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$; let $k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathrm{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{j}}\right)^{2}$,
Need to show that $K\left(\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\phi\left(\mathrm{x}_{\mathrm{i}}\right)^{\mathrm{T}} \phi\left(\mathrm{x}_{\mathrm{j}}\right)$:

$$
\begin{aligned}
& k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}} \mathbf{T}_{\mathbf{j}}^{\mathbf{j}}\right)^{2}, \\
& =1+x_{i 1}^{2} x_{j 1}^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}^{2} x_{j 2}^{2}+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2} \\
& =\left[\begin{array}{lll}
1 & x_{i 1}{ }^{2} \sqrt{ } 2 x_{i 1} x_{i 2} & x_{i 2}^{2} \sqrt{2} x_{i 1} \sqrt{2} x_{i 2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{llll}
1 & x_{j 1}^{2} & \sqrt{2} x_{j 1} x_{j 2} & x_{j 2}^{2} \sqrt{2} x_{j 1} \sqrt{2} x_{j 2}
\end{array}\right] \\
& =\phi\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{\mathrm{j}}\right) \text {, where } \phi(\mathbf{x})=\left[\begin{array}{lllll}
1 & x_{1}^{2} & \sqrt{2} x_{1} x_{2} & x_{2}^{2} & \sqrt{2} x_{1} \\
& \sqrt{2} x_{2}
\end{array}\right]
\end{aligned}
$$

What Functions are Kernels?

- For many functions $k\left(\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ checking that

$$
k\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\phi\left(\mathrm{x}_{\mathrm{i}}\right)^{\mathrm{T}} \phi\left(\mathrm{x}_{\mathrm{j}}\right) \text { can be cumbersome. }
$$

- Mercer's theorem: Every semi-positive definite symmetric function is a kernel
- Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

$K=$| $k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathrm{N}}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ | | $k\left(\mathbf{x}_{2}, \mathbf{x}_{\mathrm{N}}\right)$ |
| \ldots | \ldots | \ldots | \ldots | \ldots |
| $k\left(\mathbf{x}_{\mathrm{N}}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{\mathrm{N}}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{\mathrm{N}}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{\mathrm{N}}, \mathbf{x}_{\mathrm{N}}\right)$ |

Examples of Kernel Functions

- Linear: $k\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\mathbf{x}_{\mathrm{i}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{j}}$
- Polynomial of power $p: k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{i}}\right)^{p}$
- Gaussian (radial-basis function network):

$$
k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \frac{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{\sigma^{2}}
$$

- Sigmoid: $k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathrm{j}}\right)=\tanh \left(\beta_{0} \mathbf{x}_{\mathbf{i}}{ }^{\mathrm{T}} \mathbf{x}_{\mathbf{j}}+\beta_{1}\right)$

SVM Formulation

* Goal - 1) Correctly classify all training data

$$
\left.\begin{array}{c}
\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+b \geq 1 \quad \text { if } \quad t_{n}=+1 \\
\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+b \leq 1 \quad \text { if } \quad t_{n}=-1
\end{array}\right\}
$$

2) Define the Margin

$$
\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+b\right)\right]
$$

3) Maximize the Margin

$$
\operatorname{argmax}_{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+b\right)\right]\right\}
$$

* Equivalently written as

$$
\operatorname{argmin}_{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \text { such that } t_{n}\left(\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+b\right) \geq 1
$$

Solving the Optimization Problem

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a dual problem where a Lagrange multiplier a_{n} is associated with every constraint in the primary problem:
- The dual problem in this case is maximized

Find $\left\{a_{1}, . ., a_{N}\right\}$ such that

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} a_{n} a_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right) \text { maximized }
$$

and

$$
\sum_{n} a_{n} t_{n}=0, \quad a_{n} \geq 0
$$

Solving the Optimization Problem

" The solution has the form:

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)
$$

- Each non-zero a_{n} indicates that corresponding $\mathbf{x}_{\mathbf{n}}$ is a support vector. Let S denote the set of support vectors.

$$
b=y\left(\mathbf{x}_{n}\right)-\sum_{m \in S} a_{m} k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)
$$

- And the classifying function will have the form:

$$
y(\mathbf{x})=\sum_{n \in S} a_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

Solving the Optimization Problem

Visualizing Gaussian Kernel SVM

Overlapping class boundaries

- The classes are not linearly separable - Introducing slack variables ζ_{n}
- Slack variables are non-negative $\zeta_{n} \geq 0$
- They are defined using

$$
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\zeta_{n}
$$

- The upper bound on mis-classification

- The cost function to be optimized in this case

$$
c \sum_{n} S_{n}+\frac{1}{2} \mathbf{w}^{T} \mathbf{w}
$$

SVM Formulation - overlapping classes

- Formulation very similar to previous case except for additional constraints

$$
0 \leq a_{n} \leq C
$$

- Solved using the dual formulation - sequential minimal optimization algorithm
- Final classifier is based on the sign of

$$
y(\mathbf{x})=\sum_{n \in S} a_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

Overlapping class boundaries

$C=100$

$C=0.15$

$C=1$

$C=0.1$

