E9 205 – Machine Learning for Signal Processing

Homework # 3 Due date: Oct. 22, 2018

Analytical submitted in class and coding submitted by email. Coding assignment submitted to mlsp18 doT iisc aT gmail doT com

October 12, 2018

- Use the following data source for the remaining two questions
 leap.ee.iisc.ac.in/sriram/teaching/MLSP_18/assignments/HW3/Data.tar.gz
 Implementing SVMs 15 subject faces with happy/sad emotion are provided in the data. Each image is of 100 × 100 matrix. Perform PCA to reduce the dimension from 10000 to K. Implement a classifier on the training images with support vector machines. One potential source of SVM implementation is the LIBSVM package
 http://www.csie.ntu.edu.tw/cjlin/libsvm/
 - (a) Use the SVM to classify the test images. How does the performance change for various choice of kernels, parameter C and ϵ . How does the performance change as a function of K.
 - (b) Will the SVM classifier perform better if an LDA is applied at the input.
 - (c) Provide your answers with analysis, plots and wrapper code for SVM training and testing.

(Points 25)

2. **Kernel LDA** Deepak has learnt about linear discriminant analysis in his course. In a job interview, he is asked to find a way to perform dimensionality reduction in non-linear space. Specifically, he is given a set of N data points $\{x_1, x_2, ..., x_N\}$ and a non-linear transformation $\phi(x)$ of the data. When he is asked is to define LDA in the non-linear space, he defines the within-class and between-class scatter matrices for a two-class problem as,

$$egin{array}{lcl} oldsymbol{S}_B &=& (oldsymbol{m}_2^\phi - oldsymbol{m}_1^\phi)(oldsymbol{m}_2^\phi - oldsymbol{m}_1^\phi)^T \ oldsymbol{S}_W &=& \sum_{k=1}^2 \sum_{n \in C_k} \left[oldsymbol{\phi}(oldsymbol{x}_n) - oldsymbol{m}_k^\phi
ight] \left[oldsymbol{\phi}(oldsymbol{x}_n) - oldsymbol{m}_k^\phi
ight]^T \end{array}$$

where $\mathbf{m}_k^{\phi} = \frac{1}{N_k} \sum_{n \in C_k} \phi(\mathbf{x}_n)$ for k = 1, 2 and C_k denotes the set of data points belonging to class k. He also defines the Fisher discriminant as

$$J = \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}}$$

where \boldsymbol{w} denotes the projection vector. He goes on to say that he can solve the generalized eigen value problem to find \boldsymbol{w} which maximizes the Fisher discriminant. At this point, the interviewer suggests that $\phi(\boldsymbol{x})$ can be infinite dimensional and therefore LDA suggested by Deepak cannot be performed. Deepak counters by saying that he could solve for the LDA using kernel function $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^T \phi(\boldsymbol{x}_j)$. He goes on and shows that LDA can indeed be formulated in a kernel space and the projection of a new data point can be done using kernels (without computing $\phi(\boldsymbol{x})$). How would you have found these two solutions if you were Deepak?

3. By definiton, a kernel function $k(\mathbf{x}, \hat{\mathbf{x}}) = \phi(\mathbf{x})^T \phi(\hat{\mathbf{x}})$. A neccessary and sufficient condition for defining a kernel function is that the Gram matrix \mathbf{K} is positive definite. Using either of these definitions, prove the following kernel rules

$$k(\boldsymbol{x}, \hat{\boldsymbol{x}}) = ck_1(\boldsymbol{x}, \hat{\boldsymbol{x}})$$

$$k(\boldsymbol{x}, \hat{\boldsymbol{x}}) = f(\boldsymbol{x})k_1(\boldsymbol{x}, \hat{\boldsymbol{x}})f(\hat{\boldsymbol{x}})$$

$$k(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \boldsymbol{x}^T \boldsymbol{A}\hat{\boldsymbol{x}}$$

$$k(\boldsymbol{x}, \hat{\boldsymbol{x}}) = k_1(\boldsymbol{x}, \hat{\boldsymbol{x}}) + k_2(\boldsymbol{x}, \hat{\boldsymbol{x}})$$

$$k(\boldsymbol{x}, \hat{\boldsymbol{x}}) = k_1(\boldsymbol{x}, \hat{\boldsymbol{x}})k_2(\boldsymbol{x}, \hat{\boldsymbol{x}})$$

where k_1, k_2 denote valid kernel functions, c > 0 is any scalar, f(x) is any scalar function and A is symmetric positive definite matrix.

(Points 10)

4. One-class SVM Let $X = \{x_1, x_2, ..., x_l\}$ be dataset defined in \mathbb{R}^n . An unsupervised outlier detection method consist of finding a center \boldsymbol{a} and radius R of the smallest sphere enclosing the dataset in the high dimensional non-linear feature space $\phi(\boldsymbol{x})$. In a soft margin setting, non-negative slack variables ζ_j (for j = 1, ..., l) can be introduced such that, $||\phi(x_j) - \boldsymbol{a}||^2 \le R^2 + \zeta_j$

The objective function in this case is to minimize radius of the sphere with a weighted penalty for slack variables, i.e., $R^2 + C \sum_{j=1}^{l} \zeta_j$ where C is a penalty term for allowing a trade-off between training errors (distance of points outside the sphere) and the radius of the smallest sphere.

- (a) Give the primal form Lagrangian and the primal constraints for the one-class SVM. (**Points** 5)
- (b) Find the dual form in terms of kernel function and the KKT constraints for the one-class SVM. What are the support vectors? Will support vectors change when C > 1 is chosen? Give a numerically stable estimate of R (**Points** 15)
- (c) For a new data point x, how will we identify whether it is an outlier or not (using kernel functions)? (Points 5)
- 5. **Extending k-means** The k-means algorithm for a dataset $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ .. \ \mathbf{x}_N]$ consisting of N data points $\mathbf{x} \in \mathbb{R}^D$ is the problem of finding k disjoint clusters $C_1, C_2, ..., C_k$ with

$$\min_{C_1,..,C_k} \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} ||\mathbf{x} - \boldsymbol{\mu}_i||^2$$

where $\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$ denotes the mean vector for cluster C_i and $|C_i|$ is the cardinality (number of elements) of cluster C_i .

(a) Let $\mathbf{B} \in \{0,1\}^{N \times k}$ denote a binary cluster membership matrix where $B_{ni} = 1$ when the n-th data point is associated with i-th cluster and $B_{ni} = 0$ otherwise. Also, let $\mathbf{D} = diag\{\frac{1}{|C_1|}, \frac{1}{|C_2|}, ..., \frac{1}{|C_k|}\}$ be a diagonal $k \times k$ matrix. Show that the optimization for k-means can be equivalently represented as

$$\max_{B} tr(\mathbf{X}^T \mathbf{X} \mathbf{B} \mathbf{D} \mathbf{B}^T)$$

under the constraint that $\mathbf{B}^T \mathbf{B} = \mathbf{D}^{-1}$.

(Points 10)

(b) Let **W** denote the Gram matrix corresponding to $\phi(\mathbf{x})$ ($[W]_{i,j} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$). Assume that $[W]_{i,j} \geq 0$, $\forall i, j$. Also let $\mathbf{G} = \mathbf{B}\mathbf{D}^{\frac{1}{2}}$. Show that kernel k-means defined above is equivalent to NMF $\mathbf{W} \approx \mathbf{G}\mathbf{G}^T$ with divergence cost given by 2-norm and the additional constraint of $\mathbf{G}^T\mathbf{G} = \mathbf{I}$. (**Points 10**)