
E9 205 – Machine Learning for Signal Processing

Homework # 3

Due date: Oct. 22, 2018

Analytical submitted in class and coding submitted by email.

Coding assignment submitted to mlsp18 doT iisc aT gmail doT com

October 12, 2018

1. Use the following data source for the remaining two questions
leap.ee.iisc.ac.in/sriram/teaching/MLSP 18/assignments/HW3/Data.tar.gz
Implementing SVMs - 15 subject faces with happy/sad emotion are provided in the
data. Each image is of 100 × 100 matrix. Perform PCA to reduce the dimension from
10000 to K. Implement a classifier on the training images with support vector machines.
One potential source of SVM implementation is the LIBSVM package
http : //www.csie.ntu.edu.tw/ cjlin/libsvm/

(a) Use the SVM to classify the test images. How does the performance change for
various choice of kernels, parameter C and ǫ. How does the performance change as
a function of K.

(b) Will the SVM classifier perform better if an LDA is applied at the input.

(c) Provide your answers with analysis, plots and wrapper code for SVM training and
testing.

(Points 25)

2. Kernel LDA Deepak has learnt about linear discriminant analysis in his course. In
a job interview, he is asked to find a way to perform dimensionality reduction in non-
linear space. Specifically, he is given a set of N data points {x1, x2, .., xN} and a
non-linear transformation φ(x) of the data. When he is asked is to define LDA in the
non-linear space, he defines the within-class and between-class scatter matrices for a two-
class problem as,
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φ(xn) for k = 1, 2 and Ck denotes the set of data points belonging

to class k. He also defines the Fisher discriminant as
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where w denotes the projection vector. He goes on to say that he can solve the generalized
eigen value problem to find w which maximizes the Fisher discriminant. At this point, the
interviewer suggests that φ(x) can be infinite dimensional and therefore LDA suggested
by Deepak cannot be performed. Deepak counters by saying that he could solve for the
LDA using kernel function k(xi,xj) = φ(xi)

Tφ(xj). He goes on and shows that LDA
can indeed be formulated in a kernel space and the projection of a new data point can
be done using kernels (without computing φ(x)). How would you have found these two
solutions if you were Deepak ? (Points 20)

3. By definiton, a kernel function k(x, x̂) = φ(x)Tφ(x̂). A neccessary and sufficient condi-
tion for defining a kernel function is that the Gram matrix K is positive definite. Using
either of these definitions, prove the following kernel rules

k(x, x̂) = ck1(x, x̂)

k(x, x̂) = f(x)k1(x, x̂)f(x̂)

k(x, x̂) = xTAx̂

k(x, x̂) = k1(x, x̂) + k2(x, x̂)

k(x, x̂) = k1(x, x̂)k2(x, x̂)

where k1,k2 denote valid kernel functions, c > 0 is any scalar, f(x) is any scalar function
and A is symmetric positive definite matrix.

(Points 10)

4. One-class SVM Let X = {x1, x2, .., xl} be dataset defined in R
n. An unsupervised

outlier detection method consist of finding a center a and radius R of the smallest sphere
enclosing the dataset in the high dimensional non-linear feature space φ(x). In a soft
margin setting, non-negative slack variables ζj (for j = 1, .., l) can be introduced such
that, ||φ(xj)− a||2 ≤ R2 + ζj

The objective function in this case is to minimize radius of the sphere with a weighted
penalty for slack variables, i.e., R2 + C

∑l
j=1

ζj where C is a penalty term for allowing a
trade-off between training errors (distance of points outside the sphere) and the radius of
the smallest sphere.

(a) Give the primal form Lagrangian and the primal constraints for the one-class SVM.
(Points 5)

(b) Find the dual form in terms of kernel function and the KKT constraints for the
one-class SVM. What are the support vectors ? Will support vectors change when
C > 1 is chosen ? Give a numerically stable estimate of R (Points 15)

(c) For a new data point x, how will we identify whether it is an outlier or not (using
kernel functions) ? (Points 5)

5. Extending k-means The k-means algorithm for a dataset X = [x1 x2 .. xN ] consisting
of N data points x ∈ R

D is the problem of finding k disjoint clusters C1, C2, .., Ck with
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x denotes the mean vector for cluster Ci and |Ci| is the cardinality

(number of elements) of cluster Ci.



(a) Let B ∈ {0, 1}N×k denote a binary cluster membership matrix where Bni = 1 when
the n-th data point is associated with i-th cluster and Bni = 0 otherwise. Also, let
D = diag{ 1

|C1|
, 1

|C2|
, .., 1

|Ck|
} be a diagonal k × k matrix. Show that the optimization

for k-means can be equivalently represented as

max
B

tr(XTXBDBT )

under the constraint that BTB = D−1. (Points 10)

(b) Let W denote the Gram matrix corresponding to φ(x) ([W ]i,j = φ(xi)
Tφ(xj)). As-

sume that [W ]i,j ≥ 0, ∀ i, j. Also let G = BD
1

2 . Show that kernel k-means defined
above is equivalent to NMF W ≈ GGT with divergence cost given by 2-norm and
the additional constraint of GTG = I. (Points 10)


