E9 205 — Machine Learning for Signal Processing

Homework # 1
Due date: Sept. 10, 2018 (in class).

Analytical in person and coding part via email to mlsp18.iisc@gmail.com
Assignment should be solved individually without consent.

August 29, 2018

1. Induction in PCA - We have proved that in order to maximize the variance of 1 di-
mensional projection y = w” « of D dimensional data @, the solution is given by w = w1,
where u; is the eigen vector corresponding to the largest eigen value of sample covariance
matrix § = + Zf\;l(m — p)(z — )T and p denotes the sample mean.

Let us suppose that the variance of M dimensional projection y,; = W}\F/I:B is maximized
by W = [u; us .. ups] where u;...ups are the orthonormal eigen vectors of S correspond-
ing to the M largest eigen values. Prove the induction that variance of M + 1 dimensional
projection Y/, = W%}IHQZ is maximized by choosing W1 = (W up41]. With
this proof, given it is true for M = 1, we have PCA solution for any M. (Points 10)

2. Prove the following two matrix derivative properties for square symmetric matrices A, B,

9 _oA—l_ -1
8—Alog(|A\) =2A"" —diag(A™")

0 .
8—Atr(AB) = 2B — diag(B)

(Points 15)

3. Fisherfaces - Sagar is a data scientist who analyzes face images for detecting emotions.
In his course, he has leant about LDA and wants to use it to reduce the dimensionality
before training a classifier. However, he is faced with a situation where he has N face
images each of dimension D with N << D. As he knows to apply PCA for high dimen-
sional data, he uses whitening to reduce the dimensionality to d < N. The whitenning
process can be described as,

y=A"TW(z - p)

where « is the input D dimensional image, p is the sample mean of input images, W is the
PCA projection matrix of dimension D xd, A is d x d diagonal matrix containing d largest
eigenvalues of sample covariance and y is the whitenned output of dimension d. Given a
set of N data points, x1, X2, ..., Xy and the corresponding class labels t1, ta, ..., tx, (where
t, = {1,2,...,K}, is one of the K-class labels), he tries to learn Fisher LDA projection
on the whittened outputs, y1,yo,...,yn. Here, let p denote the sample mean for the N
samples.



(a) As afirst step, Sagar tries to find the total covariance (sample covarince) of whitenned
outputs ¥, given as,

1 N
St =12 Yn¥n
n=1

Show that for this case, S% = I where I is the d x d identity matrix. (Points 10)

(b) Assuming that S¥ is invertible, show that the first LDA projection vector w is given
by the eigenvector of S¥ with minimum magnitude of eigen value. (Points 15)

4. Fischer faces - Data is posted here
http://leap.ee.iisc.ac.in/sriram/teaching/MLSP_18/assignments/data/Data.tar. gz

15 subject faces with happy/sad emotion are provided in the data. Each image is of
100x100 matrix. Perform PCA on to reduce the dimension from 10000 to K (using
PCA for high dimensional data) and then perform LDA to one dimension. Plot the one
dimension features for each image. Select the optimum threshold to classify the emotion
and report the classification accuracy on the test data. What is the best choice of K
which gives the maximum separability ? (Points 25)

5. Speech spectrogram - We have clean and noisy speech files here

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP_18/assignments/data/speech. zip

The files are in wav format sampled at 16kH z. Write a function to compute the spectro-
gram of clean and noisy files (use 25 ms triangular window with a shift of 10 ms, compute
256 point magnitude FFT and retain the first 128 dimensions in each window, apply log
of the magnitude of the FFT.). For example, a speech file of 3s will have a spectrogram of
size 128 x 298 (without any padding at the end, where 128 is the dimension of the feature
vector and 298 is the number of frames).

(a) Assume that each speech frame (256 dimensional vector) is independent of each other.
From the clean files, compute the whitening transform. Apply the transform on the
noisy speech features. Find the average of the absolute value of the non-diagonal
entries of the sampled covariance matrix of the “whitenned” clean and noisy speech
features. Comment on use of whitenning when the data distribution has changed.

(b) Repeat the above procedure by reversing the roles of clean and noisy files.

(Points 25)



