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Outline

» Basics for Image Processing
- Filtering
- Smoothing
- Edge Detection

e Scale Invariant Feature Transform (SIFT)

Reference: UCF, Computer Vision Course
Link: http://crcv.ucf.edu/courses/CAP5415/Fall2014/index.php
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« Histogram captures the distribution of gray levels in the image.
 How frequently each gray level occurs in the image



Image filtering

* Image filtering: compute function of local
neighborhood at each position

Really important!

- Enhance images

- Denoise, resize, increase contrast, etc.
- Extract information from images

- Texture, edges, distinctive points, etc.
- Detect patterns

- Template matching



Discrete Derivative
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Discrete Derivative Finite Difference

i = f(x)—f(x—1)= f'(x) Backward difference
dx
i = f(x) —f(x + 1) = f'(x) Forward difference
dx
i — f(x +1)— f(x —1) = f’(x) Central difference
dx

Backward difference [-1 1]

Forward difference 1 -1]

Central difference -1 0 1]



Derivatives in 2 Dimensions

Given function f (x, y)
Of (x,y) ;
Gradient vector Vi(x,y)= 8f(a;, ¥) - {fx}
|

Gradient magnitude  |V/(x, )| = \/fx2 + £
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Derivatives of Images
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Correlation

f®h= ;Z fk,Dn(k,1)

f =Image
h = Kernel

T

Ay

e

L

f®h zflhl +f2h2 +f3h3
+ fahy + fshs + foh
+ foh + fihs + fohy



Convolution
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Gaussian Filter




Gaussian Filtering




Gaussian Smoothing Smoothing by Averaging



Median Filter: operates over a window by selecting the median
Intensity in the window

Gaussian Median

TX7




Edge Detection

* Goal: Identify sudden changes (discontinuities)
INn an image




What is an Edge?

 Discontinuity of intensities in the image
 Edge models
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Characterizing edges

* An edge Is a place of rapid change In the

Image intensity function

image

intensity function
(along horizontal scanline)

first derivative

\ |

edges correspond to
extrema of derivative




Sobel Edge Detector

Threshold

— Edges




Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal
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Where is the edge?



Solution: smooth first

Sigma = 50
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To find edges, look for peaks in



Convolution derivative property
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Derivative of Gaussian filter
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e Steps

Canny Edge Detector

- Smooth image with Gaussian filter

- Compute derivative of filtered image

- FIno
- App
- App

magnitude and orientation of gradient
y “Non-maximum Suppression”
y “Hysteresis Threshold



3.Gradient magnitude and gradient direction

(S,,S,) Gradient Vector

magnitude = \/(S_f +S7)
S

direction=60 = tan™ S—}

y-di-re'lction

gradient direction

Gradient Magnitude



3.Non-Maximum Suppression

VS|(x,») if [VS|(x,»)>[AS|(x", ")
M(x,y)=- &|AS|(x, y) > [AS|(x", ")
0 otherwise

x and x” are the neighbors of x along
normal direction to an edge




Before Non-Maximum After Non-Maximum

Suppression Suppression




4.Hysteresis Thresholding

* If the gradient at a pixel is

— above “High”, declare it as an ‘edge pixel’
— below “Low”, declare it as a “non-edge-pixel”

— between “low” and “high”

« Consider its neighbors iteratively then declare it an“edge
pixel” if it Is connected to an ‘edge pixel’ directly.
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Effect of o (Gaussian kernel spread/size)
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The choice of o depends on desired behavior

» large o detects large scale edges
« small o detects fine features

Source: S. Seitz



Gaussian smoothing

smoothedimage  Gaussian filter Image 24
~ -
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Find Laplacian

second order second order

derivativeinx  derivativein y « V is used for gradient (first derivative)
5> 5> * A% is used for Laplacian (Second derivative)
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Deriving the Laplacian of Gaussian (LoG)
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Approximation of LoG by Difference of Gaussians:
G(x:v Vs kO_) o G(xa Vs O-) ~ (k o 1)0-2A2G
Typical values: o =1.6; k = V2



Smooth image by Gaussian filter =2 S

Apply Laplacian to §
- Used in mechanics, electromagnetics, wave theory, quantum
mechanics and Laplace equation
Find zero crossings

- Scan along each row, record an edge point at the location of
Zero-crossing.

- Repeat above step along each column

1 I* (A2 g) Zero crossings of A°S




SIFT - Key Point Extraction

e Stands for Scale Invariant Feature Transform

« Similar to the one used In primate visual system
(human, ape, monkey, etc.)

* Transforms image data into scale invariant
coordinates

D. Lowe. Distinctive image features from scale-invariant key points., International Journal
of Computer Vision 2004.



Objective

e Extract distinctive invariant features

- Correctly matched against a large database of features
from many images

* |nvariance to image scale and rotation

e Robustness to

- Affine (rotation, scale, shear) distortion,
- Change in 3D viewpoint,

- Addition of noise,

- Change In illumination.



Steps for Extracting Key Points (SIF Points)

Scale space peak selection

- Potential locations for finding features
Key point localization

- Accurately locating the feature key points
Orientation Assignment

- Assigning orientation to the key points
Key point descriptor

- Describing the key point as a high dimensional vector (128)
(SIFT Descriptor)



Building a Scale Space
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Scale Space Peak Detection

 Compare a pixel (X) with 26
pixels in current and adjacent
scales ( )

» Select a pixel (X) If
larger/smaller than all 26 pixels

» Large number of extrema,
computationally expensive

- Detect the most stable subset
with a coarse sampling of scales
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Key Point Localization

 Candidates are chosen from extrema detection
e 2 steps

- Initial Outlier Rejection (Taylor Series)
- Further Outlier Rejection (principal curvatures)

from 729 key points to 536 key points.



Orientation Assignment

e To achieve rotation invariance

 Compute central derivatives, gradient
magnitude and direction of L (smooth image) at
the scale of key point (x,y)

» Create a weighted direction histogram in a
neighborhood of a key point (36 bins)

» Select the peak as direction of the key point
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SIFT Descriptor

 Compute relative orientation and magnitude In
a 16x16 neighborhood at key point

 Form weighted histogram (8 bin) for 4x4
regions

- Weight by magnitude and spatial Gaussian

- Concatenate 16 histograms in one long vector of
128 dimensions
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Regarding Course Programming Assignments

e Python
- Basics (PythonLearn, http://www.pythonlearn.com/slides.php)
- Terminal or IDE: Pycharm, Spyder, Jupyter Notebook.
— Libraries:

 Scikit-learn: Built on NumPy, SciPy, and matplotlib
 Theano, Keras, Tensorflow for Deep Learning

« Extra Class for Python tutorial??



Thank you
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