E9 205 Machine Learning for Signal Processing

Summary of Generative Models

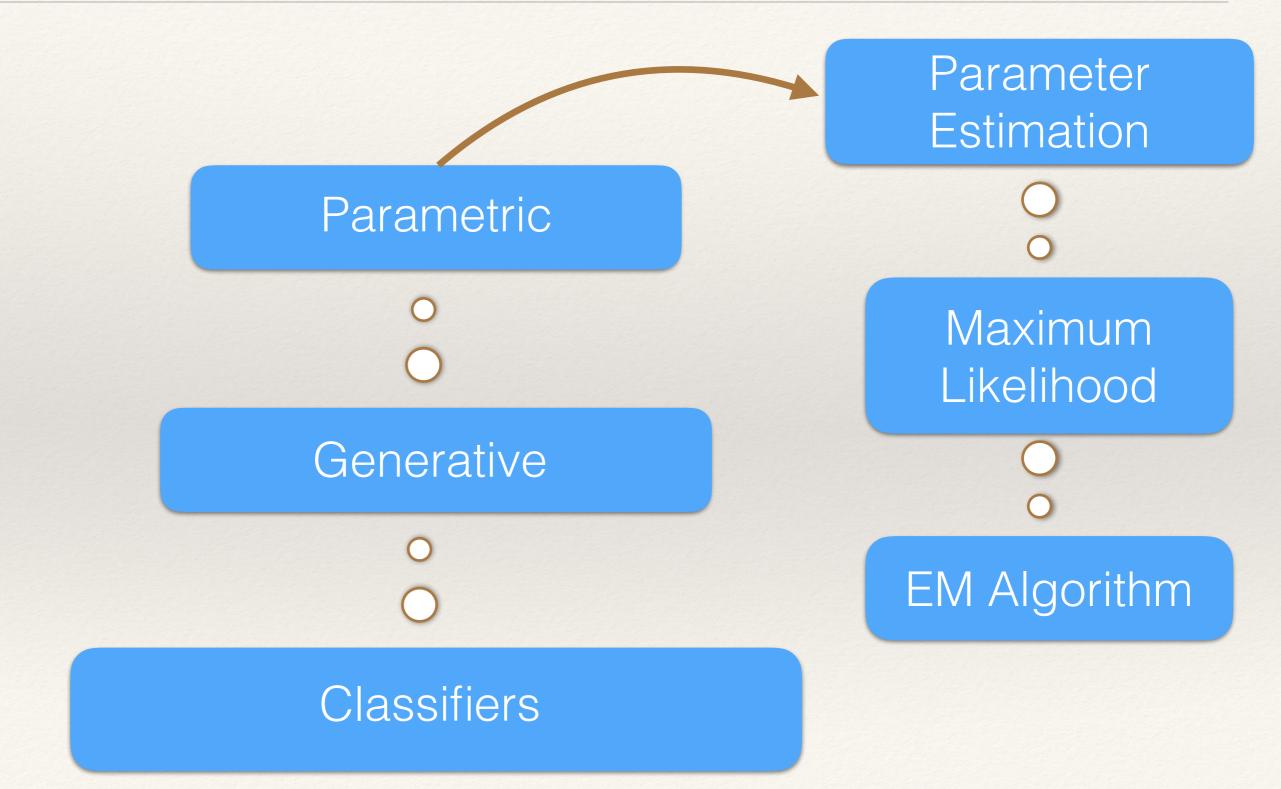
12-10-2016

Classification Problems

- * Inference problem finding $p(C|\mathbf{x})$
- Decision problem use the inference to classify
 - * Maximum posterior rules.
- * Approaches for inference estimation
 - * Generative modeling Determine likelihood $p(\mathbf{x}|C)$ and prior distribution p(C)
 - * Discriminative modeling directly model posterior

Classification Problems

Framework of Generative Models



Types of Generative Models

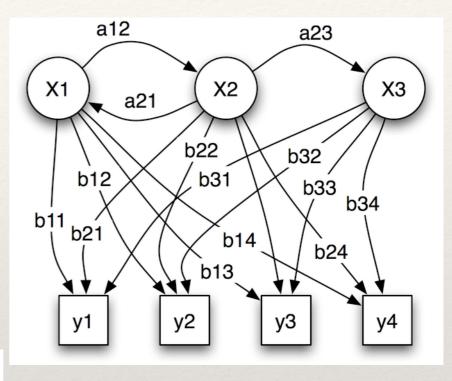
- Parametric Models
 - Collection of probability distributions which are described by a finite dimensional parameter set
- * Gaussian model $p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^* \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$
- Gaussian Mixture Model

$$p(\mathbf{x}|\boldsymbol{\Theta}) = \sum_{k=1}^{K} \alpha_k p(\mathbf{x}|\boldsymbol{\theta}_k)$$
$$p(\mathbf{x}|\boldsymbol{\theta}_k) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}_k|}} exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^* \boldsymbol{\Sigma}_k^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)\right\}$$

Types of Generative Models

Hidden Markov Models

- An observation is a probabilistic function of a state, i.e., HMM is a doubly embedded stochastic process
- A DHMM is characterized by
 - N states S_j and M distinct observations v_k (alphabet size)
 - State transition probability distribution A
 - Observation symbol probability distribution B
 - Initial state distribution π



Parameter Estimation

- Given N data points $\{\mathbf{x}_i\}_{i=1}^N$ how do we estimate the parameters of model.
 - Several criteria can be used
 - The most popular method is the maximum likelihood estimation (MLE).

EM Algorithm

- Iterative procedure.
- Assume the existence of hidden variable associated with each data sample
- Let the current estimate (at iteration n) be Define the Q function as

 $Q(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{n}) = E_{\mathbf{z}|\mathbf{X}, \boldsymbol{\Theta}^{n}} \left[\log(P(\mathbf{X}, \mathbf{z}|\boldsymbol{\Theta})) \right]$ $= \sum_{\mathbf{z}} \log(P(\mathbf{X}, \mathbf{z}|\boldsymbol{\Theta})) P(\mathbf{z}|\mathbf{X}, \boldsymbol{\Theta}^{n})$

EM Algorithm

• It can be proven that if we choose

$$\Theta^{n+1} = \arg \max_{\Theta} Q(\Theta, \Theta^n)$$

then $L(\Theta^{n+1}) \ge L(\Theta^n)$

- In many cases, finding the maximum for the Q function may be easier than likelihood function w.r.t. the parameters.
- Solution is dependent on finding a good choice of the hidden variables which eases the computation
- Iteratively improve the log-likelihood function.

EM Summary

- Initialize with a set of model parameters (n=1)
- Compute the conditional expectation (E-step) $E_{\mathbf{z}|\mathbf{X},\mathbf{\Theta}^n} \left[\log(P(\mathbf{X}, \mathbf{z}|\mathbf{\Theta})) \right]$
- Maximize the conditional expectation w.r.t. parameter. (M-step) (n = n+1)
- Check for convergence
- Go back to E-step if model has not converged.

Applications of EM Algorithm

- * GMM parameter estimation
 - hidden variables are alignment variables
 - estimating the weights, means, covariances
- HMM parameter estimation
 - hidden variables are state sequence (and alignment for GMM-HMMs).
 - estimating the transition probabilities and emission probabilities