E9 205 Machine Learning for Signal Processing

Linear Predictive Analysis

22-08-2016

Linear Prediction

 Current sample expressed as a linear combination of past samples

Error signal (for the optimal predictor) is orthogonal

to the samples used in the predictor.

 $e[n] \perp \{x[n-1], .., x[n-N]\}$

Using the orthogonality property -> normal equations

 $\mathbf{Ra} = -\mathbf{r}$

Autocorrelation matrix is Hermitian symmetric.

Properties of LP

Forward linear prediction filter

$$x[n] \longrightarrow A(z) \longrightarrow e_N[n]$$

Properties of A(z) - stability (all roots q) |q| < 1

except for line spectral process |R(k)| = R(0) for some k

AR(N) process - Any WSS process which satisfies

$$y[n] \longrightarrow A(z) \longrightarrow e[n]$$

Filter is stable - error signal is white

$$e[n] \longrightarrow \left(\frac{1}{A_N(z)}\right) \longrightarrow y[n]$$

$$S_{yy}(f) = \frac{\epsilon_N}{|1 + \sum_{n=1}^N a_{N,n}^* e^{-j2\pi f n}|^2}$$

Approximating x[n] by y[n] i.e. $S_{xx}(f)$ with $S_{yy}(f)$

AR(N) process - Any WSS process which satisfies $y[n] \longrightarrow A(z) \longrightarrow e[n]$ Filter is state: $e[n] \longrightarrow \boxed{\frac{1}{A_N(z)}} \longrightarrow y[n]$ $S_{yy}(f) = \frac{\epsilon_N}{|1 + \sum_{n=1}^N a_{N,n}^* e^{-j2\pi fn}|^2}$ $(n) \quad \text{ith } S_{ny}(f)$

Autoregressive modeling

Properties of LP

Properties of LP

Linear Prediction

AR Model of the Power Spectrum of the Signal

Applications of Autoregressive Modeling

- Economics Macroeconomic variabilities
- * Statistics System Identification.
- * Geophysics Oil Exploration.
- Neurophysics EEG signal analysis (rhythms)
- * Speech Communication Coding, Recognition.

Linear Prediction for Speech

Source Filter Model of Speech

Conversion to Spectrogram

Integration to Mel-scale

Time

Integration to Mel-scale

Time

Integration to Mel-scale

Conversion to features - Mel frequency cepstral coefficients (MFCC)

Time

Recap so far ...

- Signal analysis STFT
 - * Choice of suitable window, time frequency resolution.
- STFT factorization
 - NMF cost function, auxiliary function, divergence, applications in speech / audio.
- Signal Analysis linear prediction
 - Orthogonality of error, normal equations, approximation with AR(N) process, autoregressive modeling.

Face Images (Assignment)

Normal Lighting Conditions

Occlusion

