

E9 205 Machine Learning for Signal Processing

Linear Predictive Analysis

22-08-2016

Linear Prediction

- ❖ Current sample expressed as a linear combination of past samples

Properties of LP

Error signal (for the optimal predictor) is orthogonal to the samples used in the predictor.

$$e[n] \perp \{x[n-1], \dots, x[n-N]\}$$

Using the orthogonality property \rightarrow normal equations

$$\mathbf{R}\mathbf{a} = -\mathbf{r}$$

Autocorrelation matrix is Hermitian symmetric.

Properties of LP

Forward linear prediction filter

Properties of $A(z)$ - stability (all roots $|q| < 1$)

$$|q| < 1$$

except for line spectral process $|R(k)| = R(0)$ for some k

Properties of LP

AR(N) process - Any WSS process which satisfies

Filter is stable - error signal is white

$$S_{yy}(f) = \frac{\epsilon_N}{|1 + \sum_{n=1}^N a_{N,n}^* e^{-j2\pi f n}|^2}$$

Approximating $x[n]$ by $y[n]$ i.e. $S_{xx}(f)$ with $S_{yy}(f)$

Properties of LP

AR(N) process - Any WSS process which satisfies

Filter is stable - error signal is white

$$S_{yy}(f) = \frac{\epsilon_N}{|1 + \sum_{n=1}^N a_{N,n}^* e^{-j2\pi f n}|^2}$$

Approximating $x[n]$ by $y[n]$ i.e. $S_{xx}(f)$ with $S_{yy}(f)$

Autoregressive modeling

Properties of LP

Properties of LP

Properties of LP

Linear Prediction

AR Model of the Power Spectrum of the Signal

Applications of Autoregressive Modeling

- ❖ Economics - Macroeconomic variabilities
- ❖ Statistics - System Identification.
- ❖ Geophysics - Oil Exploration.
- ❖ Neurophysics - EEG signal analysis (rhythms)
- ❖ Speech Communication - Coding, Recognition.

Linear Prediction for Speech

Source Filter Model of Speech

Feature Extraction for Speech/Audio

Conversion to Spectrogram

Feature Extraction for Speech/Audio

Integration to Mel-scale

Frequency

Time

Feature Extraction for Speech/Audio

Integration to Mel-scale

Frequency

Time

Feature Extraction for Speech/Audio

Integration to Mel-scale

Frequency

Time

Log
+
DCT

Feature Extraction for Speech/Audio

Conversion to features - Mel frequency

cepstral coefficients (MFCC)

Frequency

Time

Recap so far ...

- ❖ Signal analysis - STFT
 - ❖ Choice of suitable window, time frequency resolution.
- ❖ STFT factorization
 - ❖ NMF - cost function, auxiliary function, divergence, applications in speech / audio.
- ❖ Signal Analysis - linear prediction
 - ❖ Orthogonality of error, normal equations, approximation with AR(N) process, autoregressive modeling.

Face Images (Assignment)

Normal Lighting Conditions

Occlusion

