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Gaussian Distribution Summary

The Gaussian model - parametric distributions
Simple and useful properties.
Can model unimodal (single peak distributions)
MLE gives intuitive results
Issues with Gaussian model

Multi-modal data

Not useful for complex data distributions

Need for mixture models




GGaussian Distribution

Often the data lies in clusters (2-D example)

Fitting a single Gaussian model may be too broad.



GGaussian Distribution
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Need mixture models
Can fit any arbitrary distribution.



GGaussian Distribution

(a) HISTOGRAM
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(b) UNIMODAL GAUSSIAN

1-D example
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Often the data lies in clusters



Gaussian Mixture Models
A Gaussian Mixture Model (GMM) is defined as

X|@ Zakp X‘Ok

Mmp{_;(x_m;(w}

p(x|0k) =

V(em)?

The weighting coefficients have the property
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GGaussian Mixture Models

Properties of GMM

Can model multi-modal
data.

Identity data clusters.

Can model arbitrarily
complex data distributions

The set of parameters for the model are

i3
@k = {O{k, Ok}k:] Bk = {u'ka Ek}
The number of parametersis KD? + KD + K



MLE for GMM

The log-likelihood function over the entire data in this
case will have a logarithm of a summation

N K
log L(®) = Zlog (Zakp(xi\Ok))

Solving for the optimal parameters using MLE for
GMM is not straight forward.

Resort to the Expectation Maximization (EM) algorithm



Expectation Maximization Algorithm

[terative procedure.

Assume the existence of hidden variable
associated with each data sample

Let the current estimate (at iteration n) be
Define the Q function as

Q(@v Gn) = Ele,@” [log(P(X, Z‘@)]
= ) log(P(X,z|®))P(z|X,0")



Expectation Maximization Algorithm

It can be proven that if we choose
O"t! = arg max (6, 0")
then L(O™) > L(O")

In many cases, finding the maximum for the Q function may
be easier than likelihood function w.r.t. the parameters.

Solution is dependent on finding a good choice of the
hidden variables which eases the computation

lteratively improve the log-likelinood function.



EM Algorithm Summary

Initialize with a set of model parameters (n=1)
Compute the conditional expectation (E-step)

Ez|X,@” [log(P(Xv Z‘G)]

Maximize the conditional expectation w.r.t.
parameter. (M-step) (n = n+1)

Check for convergence

Go back to E-step if model has not converged.



EM Algorithm for GMM

+ The hidden variables z; = | will be the index of
the mixture component which generated x;

+» Re-estimation formulae
1 N

a?ew = N Zp(ﬂa‘:z, @g)
1—1

M?ew _ Zf\il "Eip(é"mi? @g)
Zﬁ—_l p(€|$ia@g)

i1 p(llzi, ©9) (2 — ppe?) (s — ppev)T
'fil p(ﬁla:z-,@g)
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EM Algorithm for GMM




EM Algorithm for GMM

ANEMIA PATIENTS AND CONTROLS
4.4
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EM Algorithm for GMM

EM ITERATION 1
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EM Algorithm for GMM

EM ITERATION 3
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EM Algorithm for GMM

EM ITERATION 5

e
o

B
&)

-
N

s
—

N

03
©

o9
[o¢

C
O
o —

®
=

-

O

O

(-

O
@
=
@)
O

(@)

o

&

)
L
[
@
©

o
O
m
O

O
oC

3.6 3.7 3.8
Red Blood Cell Volume




=
p
O
T
<
o
m
=
=
mm

Red Blood Cell Volume
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EM Algorithm for GMM

ANEMIA DATA WITH LABELS

e
o

B
&)

-
N

s
—

N

03
©

o9
[o¢

C
O
o —

®
=

-

O

O

(-

O
@
=
@)
O

(@)

o

&

)
L
[
@
©

o
O
m
O

O
oC

3.5 3.6 3.7 3.8
Red Blood Cell Volume




K-means Algorithm for Initialization




Other Considerations

+ |nitialization - random or k-means
< Number of Gaussians
+ Type of Covariance matrix

+ Spherical covariance

\ -Less precise.
-Very efficient to compute.




Other Considerations

+ |nitialization - random or k-means
< Number of Gaussians
+ Type of Covariance matrix

* Diagonal covariance

| -More precise.
e -Efficient to compute.




Other Considerations

+ |nitialization - random or k-means
< Number of Gaussians
« Type of Covariance matrix

= Full covariance

-Very precise.
-Less efficient to compute.




