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Recap

* Real-world signals
“ Patterns in signal
* Learning - uncovering the underlying patterns

* Roadmap of the course
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T'ypes of Learning

Leaening :
Methods

Camstra, Vinciarelli, “Machine Learning for Audio, Image and Video Analysis” 2007.
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Unsupervised Learning

# Data is presented without associated output targets
« Extracting structure from the data.
« Examples like clustering and segmentation.

* Concise description of the data - dimensionality
reduction methods.




Reinforcement Learning

* Dynamic environment resulting in triplets - state/
action/reward.

* No optimal action for a given state

* Algorithm has to learn actions in a way such the
expected reward is maximized over time.

* May also involve minimizing punishment.

* Reward /punishment could be delayed - learning
based on past actions.

E Sutton, Barto, “Reinforcement Learning: An Introduction.” MIT Press, 1998.

Established
1911



Supervised Learning

* Training data is provided with along with target values

(ground truth).
# Goal - to learn the mapping function from data to targets.

* Use the mapping function to predict unseen/test data
samples.

+ Two types based on the structure of the labels.

# (Classification - discrete number of classes or categories.

+ Regression - continuous output variables.
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http://www.astroml.org/sklearn_tutorial/auto_examples/plot_ML_flow_chart.html

Feature Extraction

+ Feature Extraction
* Using measured data to build desirable values.

+ Attributes of the data that are informative and non-
redundant.

+ Resilience to noise / artifacts.

* Facilitating subsequent learning algorithm.




Feature Extraction
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Representation Problem

Cartesian Coordinates Polar Coordinates
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Feature Extraction

Scope for this course

[. Feature Extraction in Speech and Audio signals.
[I. Feature Extraction Methods for Images.

III. Brief Introduction to Feature Extraction in Text.
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Speech and Audio

* Speech/Audio - 1D signals

“ (Generated by pressure variations producing regions
of high pressure and low pressure.

* Travels through a medium of propagation (like air,
water etc).

* Human sensory organ - eardrum.
“ Converting pressure variations to electrical signals.

E * Action mimicked by a microphone.
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Sound waves in a computer

* Analog continuous signal from the microphone
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“ Discretized in time - sampling.

* Digitized in values - quantization.

E http:/ /mlsp.cs.cmu.edu/ courses/ fall2014 /lectures / slides / Class1.Introduction.pdf
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Sampling

Signals like speech/audio - analyzed

in terms of sinusoids.

+ Can be considered as a set of basis
functions.

* Complex sinusoid - ge 727 /ot

« Signal expressed as weighted sum
(integral) of sinusoids.

+ Continuous Time Fourier Transform




Sampling

» Band limited signals X =0 i B m

» Nyquist theorem - sampling frequency f, > 2B
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» Speech signals
maximum frequency ~ 4 - 8 kHz, typical sampling frequency - (8/16 kHz).

Oversampling

e

http:/ /mlsp.cs.cmu.edu/ courses/ fall2014 /lectures / slides / Class1.Introduction.pdf
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(Juantization

K/

* Storing real values using finite number of bits

Original Signal Quantized approximation

| |

Original Signal Quantized approximation

http:/ /mlsp.cs.cmu.edu/ courses/ fall2014 /lectures / slides / Class1.Introduction.pdf
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(uantization

* Speech signal quantization

. 16 bit sampling M”M«m»l

* 5 bit sampling k |

—

* 3 bit sampling :k

* 4 bit sampling

LI
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Short-term Fourier Transform




Why do we need time varying Fourier Transform
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* When the signal properties change in time

« DFT will only capture the average spectral character

« Short-window analysis can indicate the change in
spectrum.



Summary of STE'T Properties
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Narrowband versus Wideband

Short windows - poor frequency resolution - wideband spectrogram

Long windows - poor time resolution - narrowband spectrogram

narrowband wideband
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Narrowband versus Wideband

= Can Illustrate time-frequency tradeoff
on the time-frequency plane:

T z disks show ‘blurring’

ol due to window length;

oo ' ¢ “ area of disk is constant
| — Uncertainty principle:
o.:s: A f\ AN (gf 1’ ()‘[ = /\,
O 100 '2c")o 3{)0 \_, n

= Alternate tilings
of time-freq:

Dan Ellis, “STFT Tutorial”
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Dan Ellis, “STFT Tutorial”

Spectrogram of Real Sounds
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Narrowband versus Wideband
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Dan Ellis, “STFT Tutorial”



Spectrogram in Matlab

>> [d,sr]=wavread('mpgrl sx419.wav');
>> Nw=256: Dz (hann) window length

>> specgram(d,Nw,sr)

>> caxis([-80 01]) N actual sampling rate
(to label time axis)

>> colorbar
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Dan Ellis, “STFT Tutorial”



