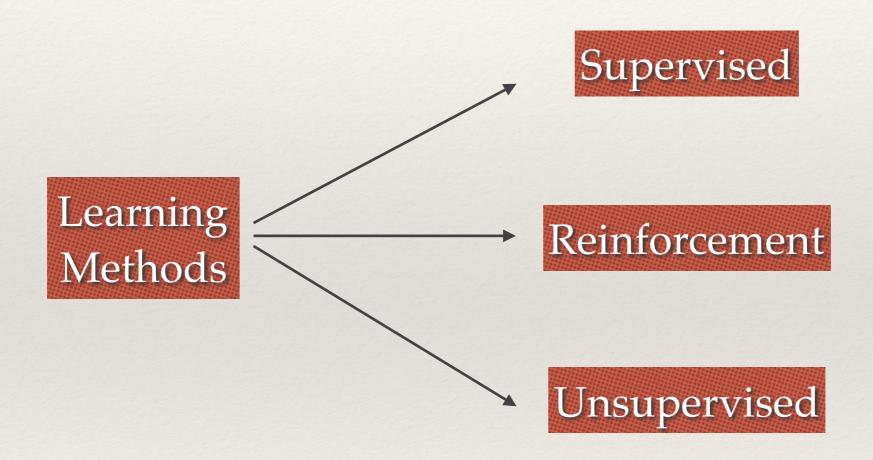
E9 205 Machine Learning for Signal Processing

Feature Extraction

08-08-2016

- * Real-world signals
 - Patterns in signal
- Learning uncovering the underlying patterns
- Roadmap of the course

Types of Learning



Camstra, Vinciarelli, "Machine Learning for Audio, Image and Video Analysis" 2007.

Unsupervised Learning

- Data is presented without associated output targets
 - * Extracting structure from the data.
 - * Examples like clustering and segmentation.
 - Concise description of the data dimensionality reduction methods.

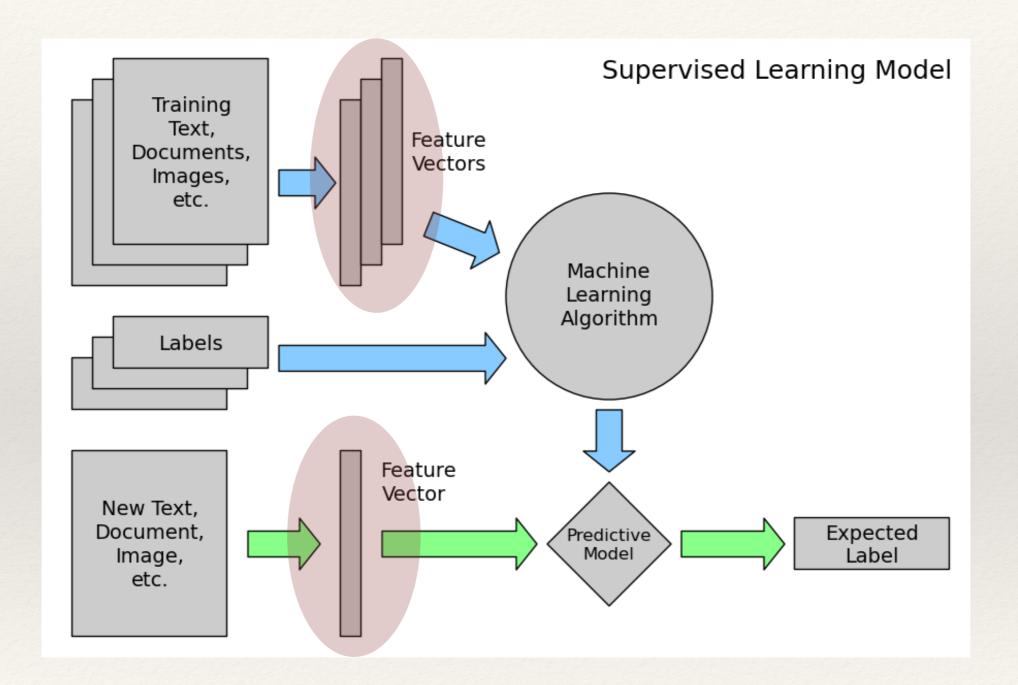
Reinforcement Learning

- Dynamic environment resulting in triplets state/ action/reward.
 - * No optimal action for a given state
 - Algorithm has to learn actions in a way such the expected reward is maximized over time.
 - * May also involve minimizing punishment.
 - Reward / punishment could be delayed learning based on past actions.

Supervised Learning

- Training data is provided with along with target values (ground truth).
 - * Goal to learn the mapping function from data to targets.
 - Use the mapping function to predict unseen/test data samples.
- * Two types based on the structure of the labels.
 - Classification discrete number of classes or categories.
 - * Regression continuous output variables.

Supervised Learning



Feature Extraction

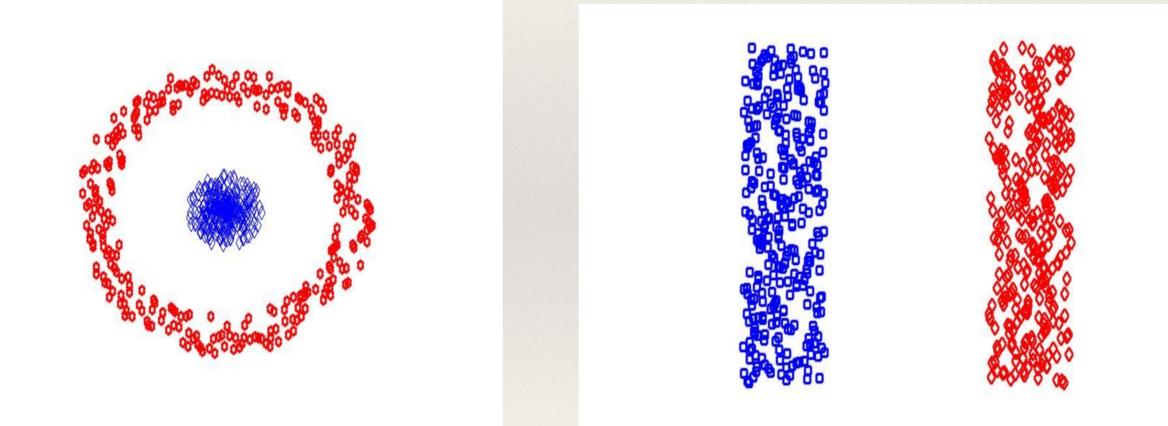
- Feature Extraction
 - * Using measured data to build desirable values.
 - Attributes of the data that are informative and nonredundant.
 - * Resilience to noise / artifacts.
 - * Facilitating subsequent learning algorithm.

Feature Extraction

Representation Problem

Cartesian Coordinates

Polar Coordinates



Feature Extraction

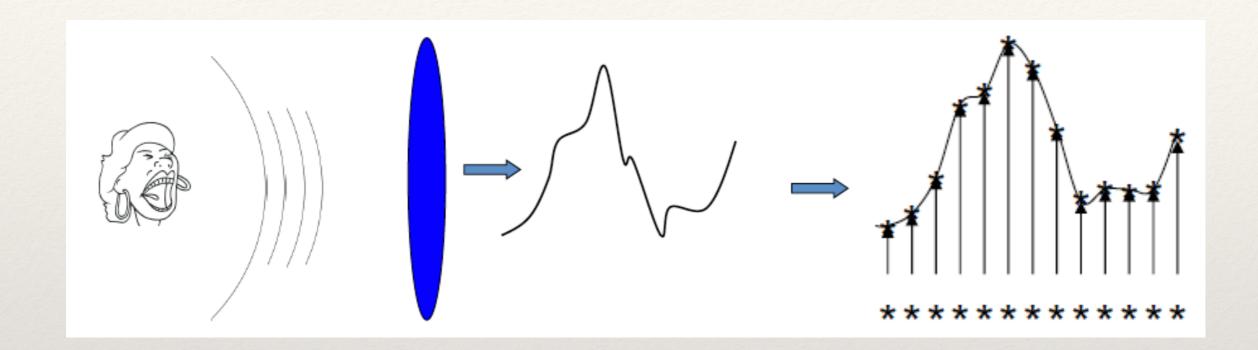
Scope for this course

I. Feature Extraction in Speech and Audio signals.II. Feature Extraction Methods for Images.III. Brief Introduction to Feature Extraction in Text.

Speech and Audio

- Speech/Audio 1D signals
 - * Generated by pressure variations producing regions of high pressure and low pressure.
 - Travels through a medium of propagation (like air, water etc).
 - * Human sensory organ eardrum.
 - * Converting pressure variations to electrical signals.
- Established 1911
- * Action mimicked by a microphone.

Sound waves in a computer

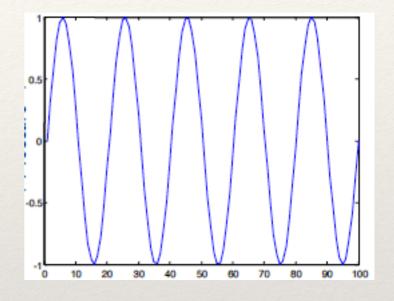


- Analog continuous signal from the microphone
 - * Discretized in time sampling.
 - * Digitized in values quantization.

http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/Class1.Introduction.pdf

Sampling

- Signals like speech/audio analyzed in terms of sinusoids.
 - Can be considered as a set of basis functions.
 - * Complex sinusoid $ae^{-j2\pi f_0 t}$
 - Signal expressed as weighted sum (integral) of sinusoids.
 - Continuous Time Fourier Transform



$$x(t) = \frac{1}{2\pi} \int X(f) e^{j2\pi ft} df$$

$$X(f) = \int x(t)e^{-j2\pi ft}dt$$

Sampling

* Band limited signals X(f) = 0 |f| > B

* Nyquist theorem - sampling frequency $f_s \ge 2B$

Oversampling

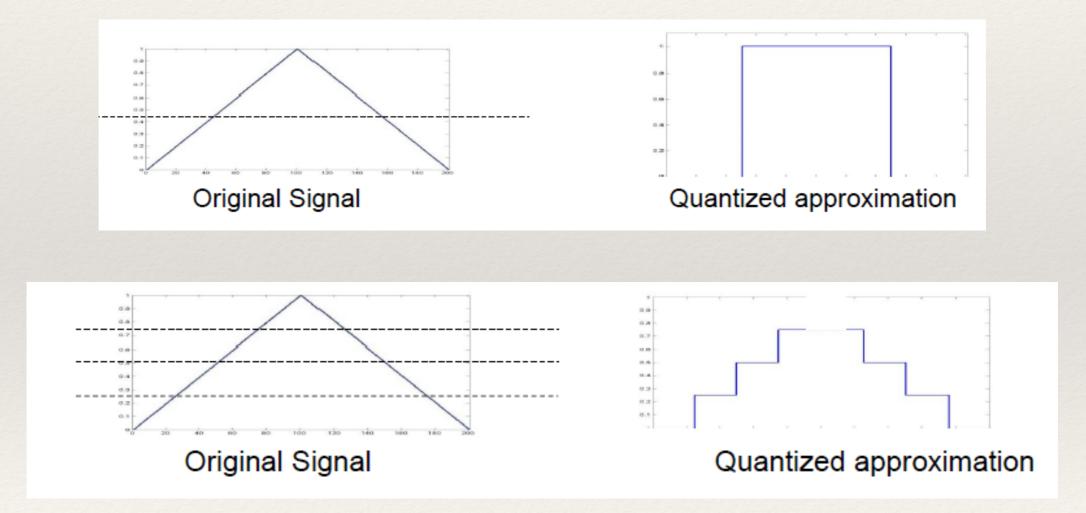
Undersampling

- Speech signals
 - maximum frequency ~ 4 8 kHz, typical sampling frequency (8/16 kHz).

http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/Class1.Introduction.pdf

Quantization

* Storing real values using finite number of bits

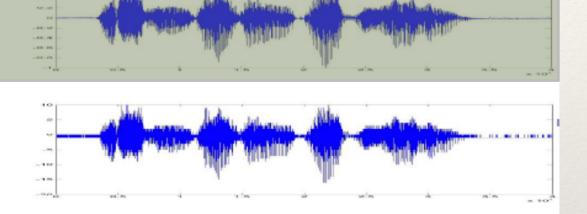


http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/Class1.Introduction.pdf

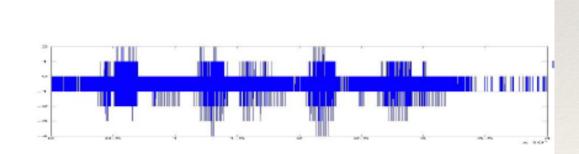
Quantization

* Speech signal quantization

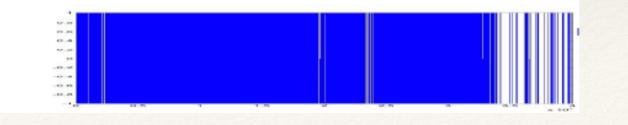
- 16 bit sampling
- 5 bit sampling



- 4 bit sampling
- 3 bit sampling

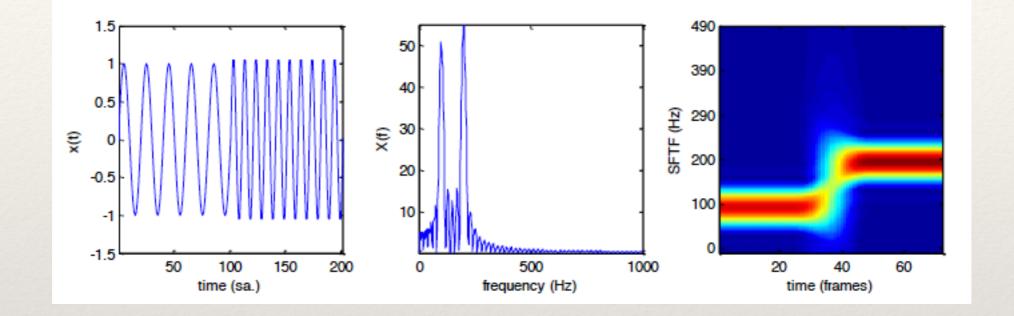


1 bit sampling



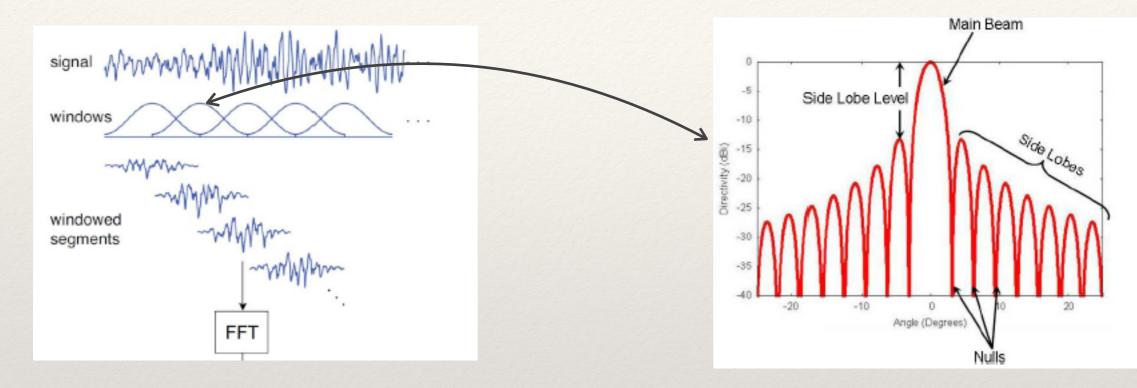
Short-term Fourier Transform

Why do we need time varying Fourier Transform

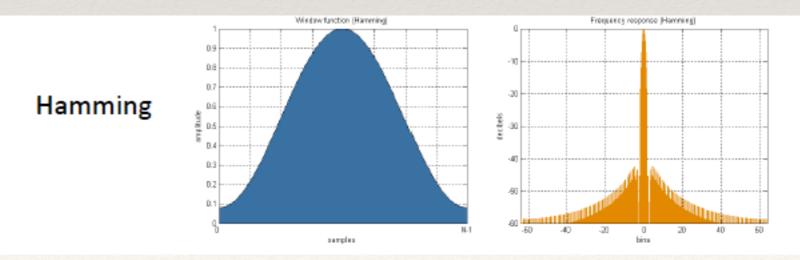


- * When the signal properties change in time
 - * DFT will only capture the average spectral character
 - Short-window analysis can indicate the change in spectrum.

Summary of STFT Properties



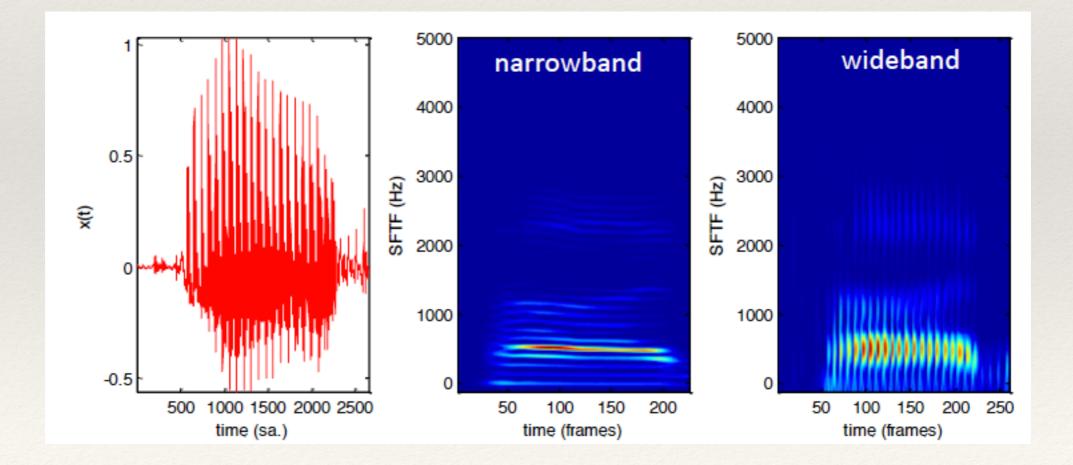
 $X[k, n_0]$



http://en.wikipedia.org/wiki/Window_function

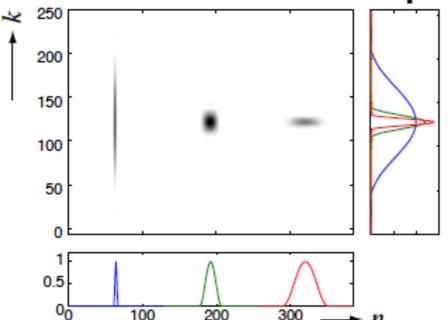
Narrowband versus Wideband

- * Short windows poor frequency resolution wideband spectrogram
- * Long windows poor time resolution narrowband spectrogram

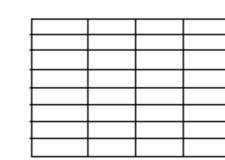


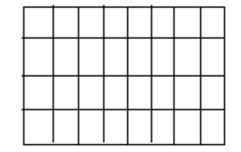
Narrowband versus Wideband

Can illustrate time-frequency tradeoff on the time-frequency plane:

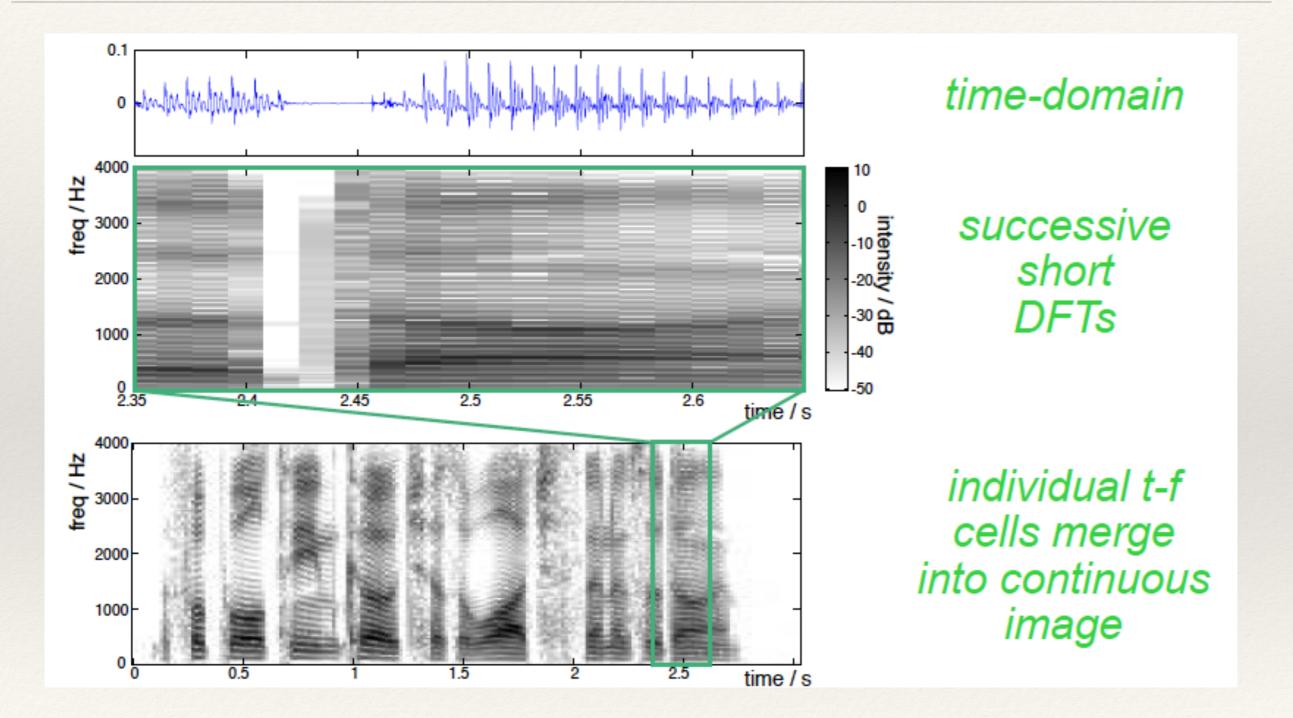


Alternate tilings of time-freq: disks show 'blurring' due to window length; **area** of disk is constant \rightarrow **Uncertainty principle**: $\delta f \cdot \delta t \ge k$

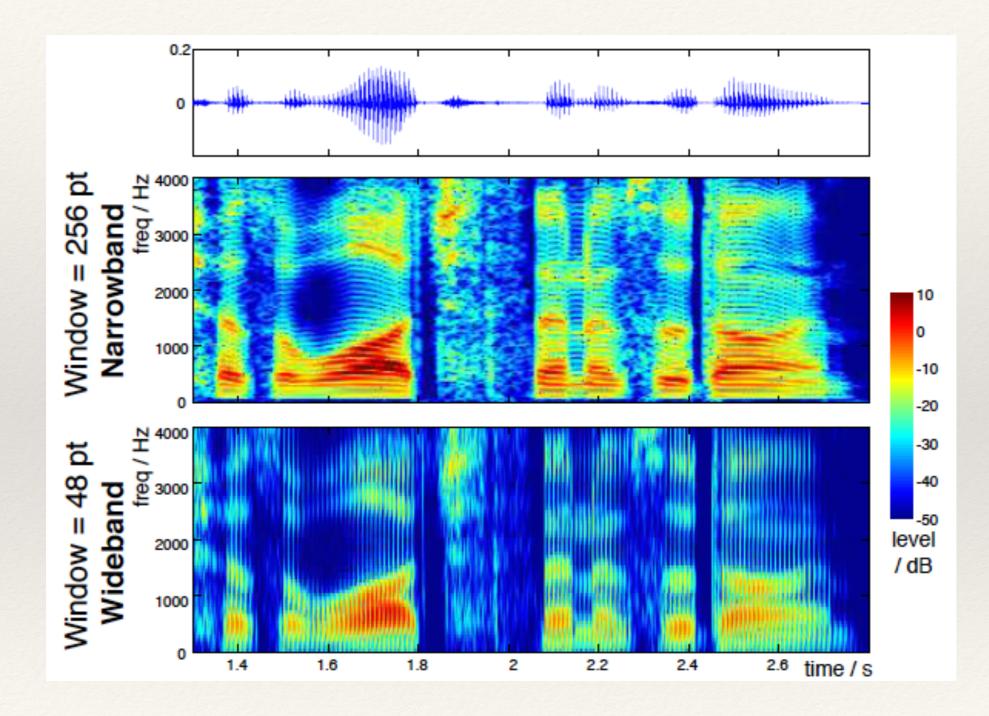




Spectrogram of Real Sounds



Narrowband versus Wideband



Dan Ellis, "STFT Tutorial"

Spectrogram in Matlab

>> [d,sr]=wavread('mpgr1_sx419.wav');

actual sampling rate

(to label time axis)

- >> Nw=256; // (hann) window length
- >> specgram(d,Nw,sr)
- >> caxis([-80 0])

>> colorbar

