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Deep Feed Forward Networks

Neural networks with multiple hidden layers - Deep
networks
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Back Propagation Algorithm

Gradient Descent Algorithm
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Convolutional Network
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Max Pooling

Single depth slice

and stride 2

Convolutional Neural Network

max pool with 2x2 filters
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Convolutional Neural Network

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1

Convolution Subsampling Convolution Subsampling Convolution

- Successive layers of convolutions and subsampling
operation [LeCun, 98].

» Non-linearities (ReLu or Sigmoid) are typically
applied after each subsampling stage.



CNNs in Speech Processing
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Recurrent Networks
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Restricted Boltzmann Machines

Initializing large networks with deep belief
networks (DBN)
 Gaussian Bernoulli RBM - Gaussian visible
layer and Bernoulli hidden layer.

- Define an energy function
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- Estimate the parameters a, b, W by maximizing

- Define joint probability density P(v,h) = :

the joint density



Resmcted Boltzmann Machines
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Earliest application was in dimensionality

reduction [Hinton, 2006].
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Restricted Boltzmann Machines
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DBN for DNN Initialization
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Understanding Deep Networks



Representation Learning

- The input data representation is one of most important
components of any machine learning system.

Cartesian Coordinates




Representation Learning

- The input data representation is one of most important
components of any machine learning system.
 Extract features that enable classification while

suppressing factors which are susceptible to noise.

 Finding the right representation for real world applications
substantially challenging.
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Representation Learning

- The input data representation is one of most important
components of any machine learning system.
- Extract factors that enable classification while

suppressing factors which are susceptible to noise.

 Finding the right representation for real world applications
substantially challenging.
- Deep learning solution - build complex representations
from simpler representations.
- The dependencies between these hierarchical
representations are refined by the target.



Understanding DNN s for Speech
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Understanding DNN s for Speech
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Understanding DNN s for Speech
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Understanding DNNs for Speech
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Understanding DNNs for Image
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Course Summary



Introduction to Signal Processing
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Feature Extraction
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Generatuve Models

GMMs HMMs

Deep Generative Models




Discriminative Models

SVMs Neural Nets

Deep Networks




Syllabus (From Webpage)

+ Introduction to real world signals

+ Feature extraction and front-end signal processing

+ Basics of pattern recognition, Generative modeling - Gaussian and mixture Gaussi:
models, hidden Markov models, factor analysis and latent variable models.

+ Discriminative modeling - support vector machines, neural networks and back
propagation.

+ Introduction to deep learning - convolutional and recurrent networks, pre-training
and practical considerations in deep learning, understanding deep networks.

+ Clustering methods and decision trees. Feature selection methods.

+ Applications in computer vision and speech recognition.



Syllabus (Based on Coverage)

* Introduction to real world signals

* Feature extraction and front-end signal processing

+ Dimensionality Reduction Methods - PCA, LDA.

+ Basics of pattern recognition, Generative modeling - Gaussian and mixture Gaussi:
models, hidden Markov models, factor analysis and latent variable models.

“ Discriminative modeling - support vector machines, neural networks and back
propagation.

* Introduction to deep learning - convolutional and recurrent networks, pre-training
and practical considerations in deep learning, understanding deep networks.

+ Deep Generative Models - RBMs and DBNs

“ Applications in computer vision and speech recognition.



Impact

Biology @
@ » big Corp.
o

R




What have we achieved ?
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Butl learned alot...



