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Figure 2.1. Nested Vector Spaces Spanned by the Scaling Functions

where the coefficients hen) are a sequence of real or perhaps complex numbers called the scaling
function coefficients (or the scaling filter or the scaling vector) and the J2 maintains the norm
of the scaling function with the scale of two.

This recursive equation is fundamental to the theory of the scaling functions and is, in some
ways, analogous to a differential equation with coefficients hen) and solution 'P(t) that mayor
may not exist or be unique. The equation is referred to by different names to describe different
interpretations or points of view. It is called the refinement equation, the multiresolution analysis
(MRA) equation, or the dilation equation.

The Haar scaling function is the simple unit-width, unit-height pulse function 'P(t) shown in
Figure 2.2, and it is obvious that 'P(2t) can be used to construct 'P(t) by

'P(t) = 'P(2t)+'P(2t-1) (2.14)

which means (2.13) is satisfied for coefficients h(O) = 1/J2, h(1) = 1/J2.
The triangle scaling function (also a first order spline) in Figure 2.2 satisfies (2.13) for h(O) =

h(1) = h(2) = and the Daubechies scaling function shown in the first part of

¢(t) = ¢(2t) + ¢(2t - 1)

(a) Haar (same as 'f!D2)

rj>(t) = + rj>(2t - 1) + - 2)

(b) Triangle (same as 'f!Sl)

Figure 2.2. Haar and Triangle Scaling Functions
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where 2j is the scaling of t (j is the log2 of the scale), 2- j k is the translation in t, and 2j / 2
maintains the (perhaps unity) L 2 norm of the wavelet at different scales.

The Haar and triangle wavelets that are associated with the scaling functions in Figure 2.2 are
shown in Figure 2.4. For the Haar wavelet, the coefficients in (2.24) are h1 (0) = 1/v'2, h1 (1) =
-1/v'2 which satisfy (2.25). The Daubechies wavelets associated with the scaling functions in
Figure 6.1 are shown in Figure 6.2 with corresponding coefficients given later in the book in
Tables 6.1 and 6.2.

'l/J(t) = ¢(2t) - ¢(2t - 1) -

(a) Haar (same as 'l/;V2)

'l/J(t) = -!¢(2t) - !¢(2t - 2) + ¢(2t - 1)

(b) Triangle (same as '1/;81)

Figure 2.4. Haar and Triangle Wavelets

We have now constructed a set of functions 'Pk(t) and 'l/Jj,dt) that could span all of L2 (R).
According to (2.19), any function g(t) E L 2 (R) could be written

00 00 00

g(t) = L c(k) 'Pk(t) +L L d(j, k) 'l/Jj,k(t)
k=-oo j=O k=-oo

(2.28)

as a series expansion in terms of the scaling function and wavelets.
In this expansion, the first summation in (2.28) gives a function that is a low resolution or

coarse approximation of g(t). For each increasing index j in the second summation, a higher or
finer resolution function is added, which adds increasing detail. This is somewhat analogous to
a Fourier series where the higher frequency terms contain the detail of the signal.

Later in this book, we will develop the property of having these expansion functions form
an orthonormal basis or a tight frame, which allows the coefficients to be calculated by inner
products as

and

c(k) = co(k) = (g(t), 'Pk(t)) = Jg(t) 'Pk(t) dt (2.29)

dj(k) = d(j, k) = (g(t), 'l/Jj,k(t)) = Jg(t) 'l/Jj,k(t) dt. (2.30)

The coefficient d(j, k) is sometimes written as dj(k) to emphasize the difference between the
time translation index k and the scale parameter j. The coefficient c(k) is also sometimes written
as cj(k) or c(j, k) if a more general "starting scale" other than j = 0 for the lower limit on the
sum in (2.28) is used.
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2.7 Examples of Wavelet Expansions

A Multiresolution Formulation Ch. 2

In this section, we will try to show the way a wavelet expansion decomposes a signal and what
the components look like at different scales. These expansions use what is called a length-8
Daubechies basic wavelet (developed in Chapter 6), but that is not the main point here. The
local nature of the wavelet decomposition is the topic of this section.

These examples are rather standard ones, some taken from David Donoho's papers and web
page. The first is a decomposition of a piecewise linear function to show how edges and constants
are handled. A characteristic of Daubechies systems is that low order polynomials are completely
contained in the scaling function spaces V j and need no wavelets. This means that when a section
of a signal is a section of a polynomial (such as a straight line), there are no wavelet expansion
coefficients dj(k), but when the calculation of the expansion coefficients overlaps an edge, there
is a wavelet component. This is illustrated well in Figure 2.6 where the high resolution scales
gives a very accurate location of the edges and this spreads out over k at the lower scales. This
gives a hint of how the DWT could be used for edge detection and how the large number of small
or zero expansion coefficients could be used for compression.

Skyline

d6 (k)

d5 (k) ,I

d4 (k) I, 'I' "

d3 (k) I' I,

d2 (k) , , I

d1 (k)

do(k)

co(k) I

Figure 2.5. Discrete Wavelet Transform of the Houston Skyline, using 1/JD8' with a Gain of y'2
for Each Higher Scale

Figure 2.6 shows the approximations of the skyline signal in the various scaling function spaces
Vj. This illustrates just how the approximations progress, giving more and more resolution at
higher scales. The fact that the higher scales give more detail is similar to Fourier methods, but
the localization is new. Figure 2.7 illustrates the individual wavelet decomposition by showing
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the components of the signal that exist in the wavelet spaces W j at different scales j. This shows
the same expansion as Figure 2.6, but with the wavelet components given separately rather than
being cumulatively added to the scaling function. Notice how the large objects show up at the
lower resolution. Groups of buildings and individual buildings are resolved according to their
width. The edges, however, are located at the higher resolutions and are located very accurately.
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Figure 2.6. Projection of the Houston Skyline Signal onto V Spaces using cPD8'
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Figure 2.7. Projection of the Houston Skyline Signal onto W Spaces using 7/JD8'

The second example uses a chirp or doppler signal to illustrate how a time-varying frequency
is described by the scale decomposition. Figure 2.8 gives the coefficients of the DWT directly as
a function of j and k. Notice how the location in k tracks the frequencies in the signal in a way
the Fourier transform cannot. Figures 2.9 and 2.10 show the scaling function approximations
and the wavelet decomposition of this chirp signal. Again, notice in this type of display how the
"location" of the frequencies are shown.
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Figure 2.8. Discrete Wavelet Transform of a Doppler, using 'l/JD8' with a gain of V2 for each
higher scale.

2.8 An Example of the Haar Wavelet System

In this section, we can illustrate our mathematical discussion with a more complete example. In
1910, Haar [HaalO] showed that certain square wave functions could be translated and scaled to
create a basis set that spans £2. This is illustrated in Figure 2.11. Years later, it was seen that
Haar's system is a particular wavelet system.
If we choose our scaling function to have compact support over 0 ::; t ::; 1, then a solution to

(2.13) is a scaling function that is a simple rectangle function

<p(t) = ifO<t<1
otherwise

(2.42)

with only two nonzero coefficients h(O) = h(l) = 1/V2 and (2.24) and (2.25) require the wavelet
to be

{

I for 0 < t < 0.5
'l/J(t) = 0-1 for 0.5 < t < 1 (2.43)

otherwise
with only two nonzero coefficients hl(O) = 1/V2 and h l (l) = -1/V2.

Va is the space spanned by <p(t - k) which is the space of piecewise constant functions over
integers, a rather limited space, but nontrivial. The next higher resolution space VI is spanned
by <p(2t - k) which allows a somewhat more interesting class of signals which does include Va.
As we consider higher values of scale j, the space Vj spanned by <p(2 j t - k) becomes better able
to approximate arbitrary functions or signals by finer and finer piecewise constant functions.
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Figure 2.9. Projection of the Doppler Signal onto V Spaces using <PD81
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Figure 3.3. Two-Stage Two-Band Analysis Tree

As we will see in Chapter 5, the FIR filter implemented by h(-n) is a lowpass filter, and the
one implemented by hI (-n) is a highpass filter. Note the average number of data points out of
this system is the same as the number in. The number is doubled by having two filters; then it is
halved by the decimation back to the original number. This means there is the possibility that no
information has been lost and it will be possible to completely recover the original signal. As we
shall see, that is indeed the case. The aliasing occurring in the upper bank can be "undone" or
cancelled by using the signal from the lower bank. This is the idea behind perfect reconstruction
in filter bank theory [Vai92, Fli94J.

This splitting, filtering, and decimation can be repeated on the scaling coefficients to give the
two-scale structure in Figure 3.3. Repeating this on the scaling coefficients is called iterating the
filter bank. Iterating the filter bank again gives us the three-scale structure in Figure 3.4.

The frequency response of a digital filter is the discrete-time Fourier transform of its impulse
response (coefficients) h(n). That is given by

00

H(w) = :L h(n) eiwn .
n=-OCl

(3.12)

The magnitude of this complex-valued function gives the ratio of the output to the input of the
filter for a sampled sinusoid at a frequency of w in radians per seconds. The angle of H (w) is the
phase shift between the output and input.
The first stage of two banks divides the spectrum of Cj+I (k) into a lowpass and highpass band,

resulting in the scaling coefficients and wavelet coefficients at lower scale Cj (k) and dj (k). The
second stage then divides that lowpass band into another lower lowpass band and a bandpass
band. The first stage divides the spectrum into two equal parts. The second stage divides the
lower half into quarters and so on. This results in a logarithmic set of bandwidths as illustrated
in Figure 3.5. These are called "constant-Q" filters in filter bank language because the ratio of
the band width to the center frequency of the band is constant. It is also interesting to note
that a musical scale defines octaves in a similar way and that the ear responds to frequencies in
a similar logarithmic fashion.

For any practical signal that is bandlimited, there will be an upper scale j = J, above which
the wavelet coefficients, dj(k), are negligibly small [GOB94J. By starting with a high resolution
description of a signal in terms of the scaling coefficients CJ, the analysis tree calculates the DWT
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Figure 3.4. Three-Stage Two-Band Analysis Tree
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Figure 3.5. Frequency Bands for the Analysis Tree

down to as low a resolution, j = jo, as desired by having J - jo stages. So, for f(t) E VJ, using
(2.8) we have

f(t)

f(t)

f(t)

L cJ(k) 'PJ,k(t)
k

L cJ-l(k) 'PJ-l,k(t) +L dJ- 1(k) 'l/JJ-l,k(t)
k k

J-l
L cJ-2(k) 'PJ-2,k(t) +L L dj(k) 'l/Jj,k(t)
k k j=J-2

J-l
L cjo(k) 'Pjo,k(t) +L L dj(k) 'l/Jj,k(t)
k k j=jo

(3.13)

(3.14)

(3.-15)

(3.16)

which is a finite scale version of (2.33). We will discuss the choice of jo and J further in Chapter 9.
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Figure 3.6. Two-Band Synthesis Bank

Figure 3.7. Two-Stage Two-Band Synthesis Tree

3.3 Input Coefficients
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One might wonder how the input set of scaling coefficients Cj+l are obtained from the signal
to use in the systems of Figures 3.2 and 3.3. For high enough scale, the scaling functions act
as "delta functions" with the inner product to calculate the high scale coefficients as simply a
sampling of f(t) [GOB92, OGB92]. If the samples of f(t) are above the Nyquist rate, they are
good approximations to the scaling coefficients at that scale, meaning no wavelet coefficients
are necessary at that scale. This approximation is particularly good if moments of the scaling
function are zero or small. These ideas are further explained in Section 6.8 and Chapter 9.

An alternative approach is to "prefilter" the signal samples to make them a better approxi-
mation to the expansion coefficients. This is discussed in [Str86].
This set of analysis and synthesis operations is known as Mallat's algorithm [MaI89b, MaI89c].

The analysis filter bank efficiently calculates the DWT using banks of digital filters and down-
samplers, and the synthesis filter bank calculates the inverse DWT to reconstruct the signal from
the transform. Although presented here as a method of calculating the DWT, the filter bank
description also gives insight into the transform itself and suggests modifications and general-
izations that would be difficult to see directly from the wavelet expansion point of view. Filter
banks will be used more extensively in the remainder of this book. A more general development
of filter banks is presented in Section 7.2.


