
Chapter 2

Wavelet transforms on images

Until now we have discussed one dimensional wavelet transforms. Images are obviously two dimensional
data. To transform images we can use two dimensional wavelets or apply the one dimensional transform
to the rows and columns of the image successively as separable two dimensional transform. In most of
the applications, where wavelets are used for image processing and compression, the latter choice is taken,
because of the low computational complexity of separable transforms.

Before explaining wavelet transforms on images in more detail, we have to introduce some notations. We
consider anN × N image as two dimensional pixel arrayI with N rows andN columns. We assume
without loss of generality that the equationN = 2r holds for some positive integerr.
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Figure 2.1: images interpretation as two dimensional arrayI, where the rows are enumerated
from top to bottom and the columns from left to right, starting at index zero

In Figure2.1 we illustrate, how the pixels of the images are arranged in the corresponding arrayI. The
rows are enumerated from top to bottom and the columns from left to right. The index starts with zero and
therefore the largest index isN − 1. The image pixels themself at rowi and columnj will be denoted
by I[i, j] or Ii,j . The wavelet transformed image will be denoted byÎ and the coefficients are addressed
with Î[k, l] or Îk,l. For the reconstructed image we will useĨ and address the corresponding reconstructed
pixels asĨ[n,m] or Ĩn,m.

The pixels and coefficients themselves are stored as signed integers in two’s complementary encoding.
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Therefore the range is given as

I[row, col] ∈
[
−2dpth−1, 2dpth−1 − 1

]
,

where0 ≤ row, col < N , assuming adpth-bit greyscale resolution. Thus, we can distinguish between
2dpth different values of brightness. For an illustration see Figure2.2. The smallest value−2dpth−1 and

−2dpth−1 2dpth−1 − 10

Figure 2.2: greyscales and the corresponding pixel values fordpth-bit resolution

the largest value2dpth−1 − 1 correspond to black and white, respectively. As a consequence pixels with
magnitude around zero appear as grey color.

In color images each pixel is represented by several color components. Typically there are three of them
per pixel. In the RGB color space, e.g., there is one component for red, green, and blue, respectively. Other
choices are the YUV color space (luminance and chrominance) and the CMYK color space (cyan, magenta,
yellow, black). Note, that there exist YUV based image and video formats, where the sizeN of the different
components is different (e.g. 4:2:2 and 4:1:1). In the case of the 4:1:1 format for instance, we obtain three
pixel arrays of sizeN , N

4 , andN
4 .

Throughout this thesis we will treat each color component of color images as separate greyscale image.

Now, let us come back to wavelet transforms on images. As already mentioned the one dimensional trans-
form will be applied to rows and columns successively. Consider a rowr = (r0, . . . , rN−1) of an image
I. This row has finite length in contrast to the signals or sequences we have considered until now. In order
to convolve such a rowr with a filter f we have to extend it to infinity in both directions. Letr′ be the
extended row defined by

r′ = (. . . , r′0, . . . , r
′
N−1, . . .),

wherer′k = rk for all 0 ≤ k < N − 1. But, how do we have to set the values ofr′ at positionsk with
k /∈ [0, N − 1]? In some sense we are free to choose these remaining samples. In the next section we will
explain, why reflection at the image boundary should be used in horizontal and in vertical direction.

2.1 Reflection at Image Boundary

There are several choices to choose the values ofr′k from outside the interval[0, N − 1]. The most popular
one’s are

• padding with zeros,

• periodic extension, or

• symmetric extension.

The simplest choice is to set all remainingr′k to zero. For an illustration see Figure2.3. In Figure2.3(a)a
sequencer of lengthN = 8 is shown, wherer = (−8,−3,−5, 0, 6, 7, 5, 4). In Figure2.3(b)this sequence
is padded with zeros in order to obtain the infinite sequencer′:

r′k =
{
rk : for all 0 ≤ k < N
0 : else.

We can observe, that in general there will be discontinuities at the boundary.
The substantial difference between the value of the border coefficients and zero leads to coefficients of large
amount in the high frequency subbands. These differences decrease the compression efficiency and intro-
duce artefacts at the boundaries since the reconstructed pixel values depend on the values of the coefficients
from outside, too, if lossy compression is considered.
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(b) r′ obtained fromr by zero padding
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(c) r′ obtained fromr by periodic extension
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(d) r′ obtained fromr by symmetric extension

Figure 2.3: different choices for the boundary treatment of finite length sequences, herer =
(−8,−3,−5, 0, 6, 7, 5, 4) of lengthN = 8

The computation of the coefficientsc0,0, c0,1 andd0,N−1 at the first level of a wavelet transform using the
CDF(2,2) wavelet depends on pixels from outside. In general, for a symmetric wavelet with corresponding
analysis filters̃h andg̃ the computation of the coefficients

c0,0, c0,1, . . . , c0,l with l =

∣∣∣h̃∣∣∣+ 1

2

d0,N−1−l, d0,N−l, . . . , d0,N−1 with l =
|g̃|+ 1

2

depends on pixels from outside.

A different approach known from Fourier techniques is periodic extension of the signal, that is

r′k·N+l = rl

where0 ≤ l < N andk ∈ Z. Here we encounter the same drawbacks as in the case of padding with zeros
(cf. Figure2.3(c)). The introduced differences at the boundary are considerable as well. Another drawback
arises in hardware implementations. Here we have to buffer the first samples ofr in order to perform the
operations at the end of the sequencer. This can result in large buffers.

The most preferred method for the choice of the coefficients from outside ofr is based on symmetric
extension. Figure2.3(d)depicts this method applied to our example sequence. More formally, symmetric
extensionr′ is defined by

r′k·N+l =
{
rN−1−l : if k is an odd value

rl : if k is an even value.
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where0 ≤ l < N andk ∈ Z. The already mentioned difference between coefficients at the boundary do
not appear using this kind of extension. Furthermore due to the locally known coefficients no significant,
additional amount of buffer memory is required.

In the following we assume, that the boundary treatment was done using symmetric extension. Therefore
we do not distinguish between finite and infinite sequence anymore.

2.2 2D-DWT

Now we are able to discuss the separable two dimensional wavelet transform in detail. Consider again a row
r of a given image of sizeN ×N . Recall from Section1.8the computation of a specific wavelet transform
using the Lifting Scheme. After one level of transform we obtainN

2 coefficientsc0,l and N
2 coefficients

d0,k with 0 ≤ l, k < N
2 . These are given in interleaved order, that is

(c0,0, d0,0, c0,1, d0,1, . . . , c0,N−1, d0,N−1), (2.1)

because of the split in odd and even indexed positions in the Lifting Scheme. Usually the row of (2.1) is
rearranged to

r(0) = (c0,0, c0,1, . . . , c0,N−1, d0,0, d0,1, . . . , d0,N−1),

because we will apply the transform to the low frequency coefficientsc0,l recursively.
Suppose we have already transformed and rearranged all rows of a given image as described above. If we
store the computed coefficients in place, that is in the memory space of the original image, we obtain a new
array with a structure as shown in Figure2.4.

(a) lena,N = 512, dpth = 8 (b) CDF(2,2) wavelet trans-
form applied to the rows of (a)

L H

(c) low (L, c0,k) and high
(H, d0,k) frequency coefficient
blocks

Figure 2.4: one dimensional CDF(2,2) wavelet transform applied to the rows and columns of the
benchmark imagelenawith reflection at the boundaries

On the left the well known benchmark imagelena1 is shown. To the right of it we have applied the CDF(2,2)
wavelet transform to the rows of the image. The corresponding result is interpreted as image again (Fig-
ure2.4(b)) and is composed of a coarse and scaled version of the original and the details, which are nec-
essary to reconstruct the image under consideration. On the right we have illustrated this interpretation as
low and high frequency coefficients blocks, denoted by L and H, respectively. Remark that most of the

1For the curious: ’lena’ or ’lenna’ is a digitized Playboy centerfold, from November 1972. (Lenna is the spelling in Playboy,
Lena is the Swedish spelling of the name.) Lena Soderberg (ne Sjööblom) was last reported living in her native Sweden, happily
married with three kids and a job with the state liquor monopoly. In 1988, she was interviewed by some Swedish computer related
publication, and she was pleasantly amused by what had happened to her picture. That was the first she knew of the use of that picture
in the computer business. (http://www.lenna.org )

http://www.lenna.org
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high frequency coefficientsd0,k are shown in grey color, which corresponds to small values around zero
(cf. Figure2.2).

The one dimensional wavelet transform can be applied to the columns of the already horizontal transformed
image as well. The result is shown in Figure2.5 and is decomposed into four quadrants with different
interpretations.

LL: The upper left quadrant consists of all coefficients, which were filtered by the analysis
low pass filter̃h along the rows and then filtered along the corresponding columns with
the analysis low pass filter̃h again. This subblock is denoted by LL and represents the
approximated version of the original at half the resolution.

HL/LH: The lower left and the upper right blocks were filtered along the rows and columns with
h̃ andg̃, alternatively. The LH block contains vertical edges, mostly. In contrast, the HL
blocks shows horizontal edges very clearly.

HH: The lower right quadrant was derived analogously to the upper left quadrant but with the
use of the analysis high pass filterg̃ which belongs to the given wavelet. We can interpret
this block as the area, where we find edges of the original image in diagonal direction.

The two dimensional wavelet transform can be applied to the coarser version at half the resolution, recur-
sively, in order to further decorrelate neighboring pixels of the input image. For an illustration we refer to
Figure2.6. The subbands in the next higher transform levelsl will be denoted by LL(l), LH(l), HL(l), and
HH(l), where LL(1) = LL, LH (1) = LH, HL(1) = HL, and HH(1) = HH, respectively.

(a) CDF(2,2) wavelet applied
as tensor product to the rows
and columns of the imagelena

LL HL

LH HH

(b) the different frequency
blocks

(c) set all coefficientsv in LH,
HL, HH with −20 < v < 20
to white color

Figure 2.5: one dimensional CDF(2,2) wavelet transform applied to the rows of the benchmark
imagelenawith reflection at the image boundaries

Since we have restricted the images to be of quadratic sizeN = 2l for l ∈ N , we can perform at most
l = log2N levels of transform. Thereafter the coefficient in the upper left corner represents the average
greyscale value of the whole image and is calledDC coefficient(DC : direct current). In practice, usually
four up to six level of wavelet transform level will be performed.
Due to the local similarities between neighboring pixels, many coefficients in the LH, HL, and HH subbands
at different scales will be small. As a consequence only a few samples, especially those of the LL block at
the coarsest scale, represents most out of theimages energy. TheenergyE(I) of an imageI is defined as

E(I) =
N−1∑
r=0

N−1∑
c=0

(Ir,c)2 (2.2)

This observation is the starting point of wavelet based image compression algorithms, which are explained
in Chapter4.
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Figure 2.6: multiresolution scheme after several levels of wavelet transform

In this thesis we will focus on the tree structured decomposition as shown in Figure2.6, where only the
LL blocks are subdivided. This type of image decomposition is also known asmultiresolution schemeand
multiscale representation. Other decomposition types are possible and known under the terms ofwavelet
packets[CMQW94].

2.3 Normalization Factors of the CDF(2,2) Wavelet in two Dimen-
sions

In Section1.7 we have already mentioned the normalization factors of the CDF(2,2)-wavelet for one di-
mension. To simplify the calculation of the transform we have extracted the factors

√
2 and 1√

2
, which

allows us to use efficient integer arithmetic units in hardware implementations.
In order to preserve the average of a one dimensional signal, or the average of the brightness of images, we
have to consider the normalization factors after the wavelet transform has taken place.
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Figure 2.7: normalization factors of the CDF(2,2) wavelet in two dimension for each levell,
0 ≤ l < 5

In one dimension we have to scale the low pass coefficients with
√

2 and the high pass coefficients with
1√
2
, which is shown in Figure2.7(a). Thereafter the same has to be done in vertical direction. Here, the

normalization factors become integer powers of two as you can easily verify in Figure2.7, where each
subblock is indexed with the corresponding factor.

To summarize, we can abstract from those normalization factors during the implementation of the CDF(2,2)
wavelet transform. Afterwards they will implicit stored and processed. Note, that these implicit factors have
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no influence to the growth of bitwidth, which is necessary to store the wavelet coefficients.
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