ELEN E4810: Digital Signal Processing Topic 10:
 The Fast Fourier Transform

1. Calculation of the DFT
2. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform

1. Calculation of the DFT

- Filter design so far has been oriented to time-domain processing - cheaper!
- But: frequency-domain processing makes some problems very simple:

- use all of $x[n]$, or use short-time windows
- Need an efficient way to calculate DFT

The DFT

- Recall the DFT:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

$$
\sum_{\substack{W_{N} @ 2 \pi / N \\ \Rightarrow W^{r} \text { has only } \\\left(W_{N}=e^{-j \frac{2 \pi}{N}}\right)}}^{\text {andion }}
$$

- discrete transform of discrete sequence
- Matrix form:

$$
\left[\begin{array}{c}
X[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{(N-1)} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right]
$$

Computational Complexity

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

- N complex multiplies
+ N-1 complex adds per point (k)
$\times N$ points $(k=0 . . N-1)$
- cpx mult: $(a+j b)(c+j d)=a c-b d+j(a d+b c)$
= 4 real mults + 2 real adds
- cpx add $=2$ real adds
- N points: $4 N^{2}$ real mults, $4 N^{2}-2 N$ real adds

Goertzel's Algorithm

- Now: $X[k]=\sum_{\ell=0}^{N-} x[\ell] W_{N}^{k \ell}$

$$
=W_{N}^{k N} \sum_{\ell} x[\ell] W_{N}^{-k(N-\ell)}
$$

looks like a convolution

- i.e. $\quad X[k]=y_{k}[N] \quad x_{e}[n]=\left\{\begin{array}{cc}x[n] & 0 \leq n<N \\ 0 & n=N\end{array}\right.$
where $y_{k}[n]=x_{e}[n] * h_{k}[n]$

$$
-h_{k}[n]=\left\{\begin{array}{cc}
W_{N}-k n & n \geq 0 \\
0 & n<0
\end{array}\right.
$$

$$
\begin{array}{ll}
x_{e}[n] \longrightarrow \\
x_{e}[N]=0 \\
\stackrel{\bullet}{+z_{k}^{-k}} & y_{k}[n] \\
y_{k}^{-1} & y_{k}[-1]=0 \\
y_{k}[N]=X[k]
\end{array}
$$

Goertzel's Algorithm

- Separate 'filters' for each $X[k]$
- can calculate for just a few values of k
- No large buffer, no coefficient table
- Same complexity for full $X[k]$ ($4 N^{2}$ mults, $4 N^{2}-2 N$ adds)
- but: can halve multiplies by making the denominator real: evaluate only
$H(z)=\frac{1}{1-W_{N}^{-k} z^{-1}}=\frac{1-W_{N}^{k} z^{-1} \leftharpoondown \text { for last step }}{1-2 \cos \frac{2 \pi k}{N} z^{-1}+z^{-2}-2 \text { real mults }} \begin{aligned} & \text { per step }\end{aligned}$

2. Fast Fourier Transform FFT

- Reduce complexity of DFT from $O\left(N^{2}\right)$ to $O(N \cdot \log N)$
- grows more slowly with larger N
- Works by decomposing large DFT into several stages of smaller DFTs
- Often provided as a highly optimized library

Decimation in Time (DIT) FFT

- Can rearrange DFT formula in 2 halves:

$$
X[k]=\sum^{N-1} x[n] \cdot W_{N}^{n k}
$$

$k=0 . . N-1$
Arrange terms in pairs...

Group terms from each pair

$$
\left.\begin{array}{l}
=\sum_{m=0}^{\frac{N}{2}-1}\left(x[2 m] \cdot W_{N}^{2 m k}+x[2 m+1] \cdot W_{N}^{(2 m+1) k}\right) \\
=\sum_{m=0} x[2 m] \cdot W_{\frac{N}{2}}^{m k}+W_{N}^{k} \sum_{m=0}^{\frac{N}{2}-1} x[2 m+1] \cdot W_{\frac{N}{2}}^{m k} \\
\left.X_{0}[<k\rangle_{N / 2}\right]
\end{array} X_{1}[<k\rangle_{N / 2}\right] .
$$

N/2 pt DFT of x for even n N/2 pt DFT of x for odd nn

Decimation in Time (DIT) FFT

$x[n]$ for even $n \quad x[n]$ for odd n
$\mathrm{DFT}_{N}\{x[n]\}=\mathrm{DFT}_{\frac{N}{2}}\left\{x_{0}[n]\right\}+W_{N}^{k} \mathrm{DFT}_{\frac{N}{2}}\left\{x_{1}[n]\right\}$

- We can evaluate an N-pt DFT as two N/2-pt DFTs (plus a few mults/adds)
- But if $\mathrm{DFT}_{N}\{\bullet\} \sim O\left(N^{2}\right)$
then $\mathrm{DFT}_{N / 2}\{\bullet\} \sim O\left((N / 2)^{2}\right)=1 / 4 O\left(N^{2}\right)$
\Rightarrow Total computation $\sim 2 \cdot 1 / 4 O\left(N^{2}\right)$
$=1 / 2$ the computation $(+\varepsilon)$ of direct DFT

One-Stage DIT Flowgraph

$$
X[k]=X_{0}\left[k k_{\frac{N}{2}}\right]+W_{N}^{k} X_{1}\left[(k\rangle_{\frac{N}{2}}\right]
$$

"twiddle factors": always apply to odd-terms output

Multiple DIT Stages

- If decomposing one DFT_{N} into two smaller $\mathrm{DFT}_{N / 2}$'s speeds things up ... Why not further divide into $\mathrm{DFT}_{N / 4}$'s ?
- i.e. $X[k]=X_{0}\left[\langle k\rangle_{\frac{N}{2}}\right]+W_{N}^{k} X_{1}\left[\langle k\rangle_{\frac{N}{2}}\right]$
- make: $\left.\underset{0 \leq k<N / 2}{ } X_{0}[k]=X_{00}\left[\langle k\rangle_{\frac{N}{4}}\right]+W_{\frac{N}{2}}^{k} X_{01}[k\rangle_{\frac{N}{4}}\right]$

N/4-pt DFT of even points N/4-pt DFT of odd points in even subset of $x[n]$ from even subset

- Similarly, $X_{1}[k]=X_{10}\left[\langle k\rangle_{\frac{N}{4}}\right]+W_{\frac{N}{2}}^{k} X_{11}\left[\langle k\rangle_{\frac{N}{4}}\right]$

Two-Stage DIT Flowgraph

Multi-stage DIT FFT

- Can keep doing this until we get down to 2-pt DFTs:
"butterfly" element
$\begin{aligned}-\mathrm{DFT}_{2}-X[0] & =x[0]+x[1] \\ -X[1] & =x[0]-x[1]\end{aligned}$

$\rightarrow N=2^{M}$-pt DFT reduces to M stages of twiddle factors \& summation ($O\left(N^{2}\right.$) part vanishes)
\rightarrow real mults $<M \cdot 4 N$, real adds $<2 \cdot M \cdot 2 N$
\rightarrow complexity $\sim O(N \cdot M)=O\left(N \cdot \log _{2} N\right)$

FFT Implementation Details

- Basic butterfly (at any stage):

2 cpx mults

- Can simplify:

just one cpx mult!

$$
\begin{aligned}
& =e^{-j \frac{2 \pi r}{N}} \cdot e^{-j \frac{2 \pi N / 2}{N}} \\
& =-W_{N}^{r}
\end{aligned}
$$

$-1 乙$ i.e. SUB rather than ADD

8-pt DIT FFT Flowgraph

- -1's absorbed into summation nodes
- $W_{N}{ }^{0}$ disappears
- 'in-place' algorithm: sequential stages

FFT for Other Values of N

- Having $N=2^{M}$ meant we could divide each stage into 2 halves = "radix-2 FFT"
- Same approach works for:
- $N=3^{M}$ radix-3
- $N=4^{M}$ radix-4 - more optimized radix-2
- etc...
- Composite $N=a \cdot b \cdot c \cdot d \rightarrow$ mixed radix (different N / r point FFTs at each stage)
- .. or just zero-pad to make $N=2^{M}$

Inverse FFT

only differences
$1{ }^{N-1}$ from forward DFT

- Recall IDFT: $\quad x[n]=\frac{1}{N} \sum_{k=0} X[k] W_{N}^{-n k}$
- Thus:

Forward DFT of $x^{\prime}[n]=\left.X^{*}[k]\right|_{k=n}$
i.e. time sequence made from spectrum

$$
\left.N x^{*}[n]=\sum_{k=0}^{N-1}\left(X[k] W_{N}^{-n k}\right)^{*}=\sum_{k=0}^{N-1} X^{*}[k] W_{N}^{n k}\right)
$$

- Hence, use FFT to calculate IFFT:

$$
x[n]=\frac{1}{N}\left[\sum_{k=0}^{N-1} X^{*}[k] W_{N}^{n k}\right]^{*} \operatorname{Re}\{X[k]\} \xrightarrow{\operatorname{Re}\{x[k]\}-\operatorname{DFT}_{-1 / N} \operatorname{Re} \operatorname{Re}} \operatorname{Im}\{x[n]\}
$$

DFT of Real Sequences

- If $x[n]$ is pure-real, DFT wastes mult's
- Real $x[n] \rightarrow$ Conj. symm. $X[k]=X^{*}[-k]$
- Given two real sequences, $x[n]$ and call $y[n]=j \cdot w[n], v[n]=x[n]+y[n]$
- N-pt DFT $V[k]=X[k]+Y[k] \sim X[k]$ but: $V[k]+V^{*}[-k]=X[k]+X^{*}[-k]+Y[k]+Y$
$\Rightarrow X[k]=1 / 2\left(V[k]+V^{*}[-k]\right), W[k]=-j /{ }_{2}\left(V[k]-V^{*}[-k]\right)$
- i.e. compute DFTs of two N-pt real sequences with a single N-pt DFT

3. Short-Time

Fourier Transform (STFT)

- Fourier Transform (e.g. DTFT) gives spectrum of an entire sequence:
- How to see a time-varying spectrum?
- e.g. slow AM of a sinusoid carrier:

Fourier Transform of AM Sine

- Spectrum of whole sequence ${ }^{400}$ indicates modulation indirectly...

... as cancellation
 between closely-$\frac{-N \sin }{2} \frac{2 \pi(k-1) n^{0.5}}{N}$ tuned sines

$$
\frac{-N \sin }{2} \frac{2 \pi(k+1) n}{N}
$$

Dan Ellis
2013-11-27

Fourier Transform of AM Sine

- Sometimes we'd rather separate modulation and carrier: $x[n]=A[n] \cos \omega_{0} n$
- A $n]$ varies on a
 different (slower) timescale
- One approach:
- chop $x[n]$ into short sub-sequences ..
- .. where slow modulator is ~ constant
- DFT spectrum of pieces \rightarrow show variation

FT of Short Segments

- Break up x[n] into successive, shorter chunks of length $N_{F T}$, then DFT each:

Shows amplitude modulation
of ω_{0} energy

The Spectrogram

- Plot successive DFTs in time-frequency:

- This image is called the Spectrogram

Short-Time Fourier Transform

- Spectrogram = STFT magnitude plotted on time-frequency plane
- STFT is (DFT form):

- intensity as a function of time \& frequency

STFT Window Shape

- $w[n]$ provides 'time localization' of STFT
- e.g. rectangular $w[n]$ timenimin
selects $x[n], n_{0} \leq n<n_{0}+N_{W}$
- But: resulting spectrum has same problems as windowing for FIR design:
DTFT
form of

$$
\begin{aligned}
X\left(e^{j \omega}, n_{0}\right) & =\operatorname{DTFT}\left\{x\left[n_{0}+n\right] \cdot w[n]\right\} \\
& =\int_{-\pi}^{\pi} e^{j \theta n_{0}} X\left(e^{j \theta}\right) W\left(e^{j(\omega-\theta)}\right) d \theta
\end{aligned}
$$

spectrum of short-time window
is convolved with (twisted) parent spectrum

STFT Window Shape

- e.g. if $x[n]$ is a pure sinusoid,

blurring (mainlobe)
+ ghosting (sidelobes)
- Hence, use tapered window for $w[n]$

Dan Ellis
2013-11-27

STFT Window Length

- Length of $w[n]$ sets temporal resolution

short window measures

longer window averages only local properties
- Window length \propto 1/(Mainlobe width)

- more time detail \leftrightarrow less frequency detail

STFT Window Length

- Can illustrate time-frequency tradeoff on the time-frequency plane:

- Alternate tilings of time-freq:

half-length window \rightarrow half as many DFT samples

Spectrograms of Real Sounds

Narrowband vs. Wideband

- Effect of varying window length:

Spectrogram in Matlab

>> [d,sr]=wavread('mpgr1_sx419.wav');
>> Nw=256;
>> specgram(d,Nw,sr)
>> caxis([-80 0]) actual sampling rate (to label time axis)

>> colorbar

STFT as a Filterbank

- Consider one 'row' of STFT:

$\begin{aligned} & X_{k}\left[n_{0}\right]=\sum_{n=0}^{N-1} x\left[n_{0}+n\right] \cdot w[n] \cdot e^{-j \frac{2 \pi k n}{N}} \\ &=\sum_{m=0}^{-(N-1)} h_{k}[m] x\left[n_{0}-m\right] \\ & \text { where } h_{k}[n]=w[-n] \cdot e^{j \frac{2 \pi k n}{N}} \end{aligned}$

- Each STFT row is output of a filter (subsampled by the STFT hop size)

STFT as a Filterbank

- If $h_{k}[n]=w[(-) n] \cdot e^{j \frac{2 \pi k n}{N}}$
then $H_{k}\left(e^{j \omega}\right)=W\left(e^{(-) j\left(\omega-\frac{2 \pi k}{N}\right)}\right)$ shift-in-w
- Each STFT row is the same bandpass response defined by $W\left(e^{j \omega}\right)$, frequency-shifted to a given DFT bin:

A bank of identical, frequency-shifted bandpass filters: "filterbank"

STFT Analysis-Synthesis

- IDFT of STFT frames can reconstruct (part of) original waveform
- e.g. if $X\left[k, n_{0}\right]=\operatorname{DFT}\left\{x\left[n_{0}+n\right] \cdot w[n]\right\}$ then $\operatorname{IDFT}\left\{X\left[k, n_{0}\right]\right\}=x\left[n_{0}+n\right] \cdot w[n]$
- Can shift by n_{0}, combine, to get $\hat{x}[n]$:

- Could divide by $w\left[n-n_{0}\right]$ to recover $x[n] \ldots$

STFT Analysis-Synthesis

- Dividing by small values of $w[n]$ is bad
- Prefer to overlap windows:
 at $n_{0}=\mathrm{r} \cdot H$ where $H=N / 2$ (for example) hopsize \quad window length
- Then $\hat{x}[n]=\sum_{r} x[n] w[n-r H]$

$$
=x[n] \quad \text { if } \quad \sum_{\forall r} w[n-r H]=1
$$

STFT Analysis-Synthesis

- Hann or Hamming windows with 50% overlap sum to constant
$\left(0.54+0.46 \cos \left(2 \pi \frac{n}{N}\right)\right)$
$+\left(0.54+0.46 \cos \left(2 \pi \frac{n-\frac{N}{2}}{N}\right)\right)=1.08$

- Can modify individual frames of $X[k, n]$ and then reconstruct
- complex, time-varying modifications - tapered overlap makes things OK

STFT Analysis-Synthesis

- e.g. Noise reduction:

STFT of
original speech

Speech corrupted by white noise

Energy threshold mask

