Introduction to Wavelets in Image Processing

Pyramid Representation

- Recall that we can create a multi-resolution pyramid of images
- At each level, we just store the differences (residuals) between the image at that level and the predicted image from the next level
- We can reconstruct the image by just adding up all the residuals
- Advantage: residuals are easier to store

FIGURE 7.3 Two

image pyramids and their statistics: (a) a Gaussian (approximation) pyramid and (b) a Laplacian (prediction residual) pyramid.

Wavelets

- Wavelets are a more general way to represent and analyze multiresolution images
- Can also be applied to 1D signals
- Very useful for
 - image compression (e.g., in the JPG-2000 standard)
 - removing noise

Wavelet Analysis

- Motivation
 - Sometimes we care about both frequency as well as time
 - Example: Music

- Time domain operations tell us "when"
- Fourier domain operations tell us "frequency"

Image and Multidimensional Signal Processing

Continuous Wavelet Transform

- Define a function $\psi(x)$
 - assume $\psi(x)$ band-limited and its dc component = 0
- Create scaled and shifted versions of $\psi(x)$

$$\psi_{s,\tau}(x) = \frac{1}{\sqrt{s}} \psi\left(\frac{x-\tau}{s}\right)$$

• Example:

Example of scaling

$$f(t)=\psi(t) \hspace{0.1in} ; \hspace{0.1in} a=1$$

$$f(t) = \psi(2t)$$
; $a = \frac{1}{2}$

$$f(t) = \psi(4t)$$
; $a = \frac{1}{4}$

Continuous Wavelet Transform

• Define the continuous wavelet transform of *f*(*x*):

$$W_{\varphi}(s,\tau) = \int_{-\infty}^{\infty} f(x) \psi_{s,\tau}(x) \, dx$$

- This transforms a continuous function of one variable into a continuous function of two variables: translation and scale
- The wavelet coefficients measure how closely correlated the wavelet is with each section of the signal
- For compact representation, choose a wavelet that matches the shape of the image components
 - Example: Haar wavelet for black and white drawings

Example

Higher value of $W_{\psi}(s,\tau_2)$

Colorado Schu

Matlab Demo

- Run "wavemenu"
 - Choose "Continuous wavelet 1D"
 - Choose "Example analysis" -> "frequency breakdown with mexh"
 - Look at magnitude of coefficients (right click on coefficients to select scale, then hit the button "new coefficients line")

Inverse Transform

• Inverse continuous wavelet transform

$$f(x) = \frac{1}{C_{\psi}} \int_0^\infty \int_{-\infty}^\infty W_{\psi}(s,\tau) \frac{\psi_{s,\tau}(x)}{s^2} d\tau \, ds$$

• where

$$C_{\psi} = \int_{-\infty}^{\infty} \frac{\left|\Psi(\mu)\right|}{\left|\mu\right|} d\mu$$

• and $\Psi(\mu)$ is the Fourier transform of $\psi(x)$

Discrete Wavelet Transform

- Don't need to calculate wavelet coefficients at every possible scale
- Can choose scales based on powers of two, and get equivalent accuracy

$$\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k)$$

• We can represent a discrete function f(n) as a weighted summation of wavelets $\psi(n)$, plus a coarse approximation $\phi(n)$

$$f(n) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_{0},k) \varphi_{j_{0},k}(n) + \frac{1}{\sqrt{M}} \sum_{j=j_{0}}^{\infty} \sum_{k} W_{\psi}(j,k) \psi_{j,k}(n)$$

where j_0 is an arbitrary starting scale, and n = 0, 1, 2, ... M

"Approximation" coefficients
$$W_{\Phi}(j_0,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \varphi_{j_0,k}(x)$$

"Detail" coefficients
$$W_{\Psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \psi_{j,k}(x)$$

Comparison with CWT

- Usually you don't need to compute the continuous transform
- A signal (with finite energy) can be reconstructed from the discrete transform

From Matlab help page on wavelets

Colorado School of Mines

Image and Multidimensional Signal Processing

Colorado School of Mines

Image and Multidimensional Signal Processing

Example

• A function can be represented by a sum of approximation plus detail

$$f(x) = f_a(x) + f_d(x)$$

$$f_a(x) = \frac{3\sqrt{2}}{4}\varphi_{0,0}(x) - \frac{\sqrt{2}}{8}\varphi_{0,2}(x)$$

$$f_d(x) = \frac{-\sqrt{2}}{4}\psi_{0,0}(x) - \frac{\sqrt{2}}{8}\psi_{0,2}(x)$$

Matlab Demos

- "wavemenu"
- Do 1D discrete wavelet transform on noisy doppler signal, show denoising

Expanding to Two Dimensions

Colorado

FIGURE 7.7 A four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.5.

d^v а d^H d^D

a(m,n): approximation

d^v(m,n): detail in vertical

d^H(m,n): detail in horizontal

d^D(m,n): detail in diagonal

Colorado School of Mines

Image and Multidimensional Signal Processing

a b c d FIGURE 7.8 (a) A discrete wavelet transform using Haar basis functions. Its local histogram variations are also shown; (b)–(d) Several different approximations (64 × 64, 128 × 128, and 256 × 256) that can be obtained from (a).

Colorado

Use of Wavelets in Processing

- Approach:
 - Compute the 2D wavelet transform
 - Alter the transform
 - Compute the inverse transform
- Examples:
 - De-noising
 - Compression
 - Image fusion

Figure 14–36 Wavelet transform image fusion: (a), (b) images taken at different focus settings; (c) fused image; (d) MRI image; (e) PET image; (f) fused image (Courtesy Henry Hui Li, reprinted by permission from [28])

Matlab Examples ("wavemenu")

- De-noising
 - Choose "SWT de-noising 2D"
 - Set threshold value to zero out coefficients below the threshold
- Compression
 - Choose "Wavelet coefficients selection 2D"
- Fusion
 - Choose "Image fusion"

Original Image - size = (256, 256)

Original Decomposition at level 5

Synthesized Image

Modified Decomposition at level 5

		facets (256x256)					
Navelet		bior	▼ 6.8				
_evel		5	•				
	ſ	Inches					
	Į	Anaryze					
		Define Selection m	ethod				
	Global		•				
App	cfs	Select All		•			
	Sele	ected Biggest Co	efficients				
	Initial		_	Kept			
A5	576	4	•	576			
D5	1728	•	×	382			
D4	2883	•	×	618			
D3	6348	•	F	1233			
D2	17328	•	•	2264			
D1	55488	<u>.</u>		2695			
S	84351	•	Þ	7768			
	Apply		Residu	als			

Х+	Υ +	XY+	Center On	X	Info	Χ =		History	<	View Axes	Close
Х-	Y-	XY-				Y =			<<-		01036

Summary / Questions

- Wavelets represent the scale of features in an image, as well as their position.
 - Can also be applied to 1D signals.
- They are useful for a number of applications including image compression.
- We can use them to process images:
 - Compute the 2D wavelet transform
 - Alter the transform
 - Compute the inverse transform
- What are some other applications of wavelet processing?