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Synonyms

GMM; Mixture model; Gaussian mixture density

Definition

A Gaussian Mixture Model (GMM) is a parametric probabiligrasity function represented as a weighted sum of Gaussian
component densities. GMMs are commonly used as a parameidel of the probability distribution of continuous measur
ments or features in a biometric system, such as vocal+etated spectral features in a speaker recognition sy<Bii
parameters are estimated from training data using thdiiterBxpectation-Maximization (EM) algorithm or Maximu#a
Posteriori (MAP) estimation from a well-trained prior model.

Main Body Text

Introduction

A Gaussian mixture model is a weighted sum\éfcomponent Gaussian densities as given by the equation,

M
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wherex is a D-dimensional continuous-valued data vector (i.e. measent or features)y;,i = 1,..., M, are the mixture
weights, andg(x|u;, 3;),¢ = 1,..., M, are the component Gaussian densities. Each componeritydisna D-variate
Gaussian function of the form,
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with mean vectop,; and covariance matriX’;. The mixture weights satisfy the constraint t@fi Jw; = 1.
The complete Gaussian mixture model is parameterized bynt#an vectors, covariance matrices and mixture weights
from all component densities. These parameters are debéctepresented by the notation,

*This work was sponsored by the Department of Defense undeFdice Contract FA8721-05-C-0002. Opinions, interpiete,
conclusions, and recommendations are those of the authdrara not necessarily endorsed by the United States Goeetnm



2 Douglas Reynolds

A= A{w;, piy, i} i=1,..., M. 3)

There are several variants on the GMM shown in Equa®rilthe covariance matrices;, can be full rank or constrained
to be diagonal. Additionally, parameters can be sharededr among the Gaussian components, such as having a common
covariance matrix for all components, The choice of modafiguration (number of components, full or diagonal covac=
matrices, and parameter tying) is often determined by theusutof data available for estimating the GMM parameters and
how the GMM is used in a particular biometric application.

It is also important to note that because the component @Gauare acting together to model the overall feature density
full covariance matrices are not necessary even if the featare not statistically independent. The linear comlinaif
diagonal covariance basis Gaussians is capable of modilngorrelations between feature vector elements. Theteffe
of using a set of\/ full covariance matrix Gaussians can be equally obtaineddiyg a larger set of diagonal covariance
Gaussians.

GMMs are often used in biometric systems, most notably irakperecognition systems, due to their capability of rep-
resenting a large class of sample distributions. One of tweepful attributes of the GMM s its ability to form smooth
approximations to arbitrarily shaped densities. The @assini-modal Gaussian model represents feature disiwits by
a position (mean vector) and a elliptic shape (covariancgixjiand a vector quantizer (VQ) or nearest neighbor model
represents a distribution by a discrete set of charadtetishplatesI]. A GMM acts as a hybrid between these two models
by using a discrete set of Gaussian functions, each with dvan mean and covariance matrix, to allow a better modeling
capability. Figurel compares the densities obtained using a unimodal Gaussidelpa GMM and a VQ model. Plot (a)
shows the histogram of a single feature from a speaker rémgeystem (a single cepstral value from a 25 second uttera
by a male speaker); plot (b) shows a uni-modal Gaussian nuddkls feature distribution; plot (¢) shows a GMM and its
ten underlying component densities; and plot (d) shows adniam of the data assigned to the VQ centroid locations of a
10 element codebook. The GMM not only provides a smooth dveisdribution fit, its components also clearly detail the
multi-modal nature of the density.
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Fig. 1.Comparison of distribution modeling. (a) histogram of ayiércepstral coefficient from a 25 second utterance by a npaigker (b)
maximum likelihood uni-modal Gaussian model (c) GMM andLiisunderlying component densities (d) histogram of the dss&ggned to
the VQ centroid locations of a 10 element codebook.
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The use of a GMM for representing feature distributions inartetric system may also be motivated by the intuitive
notion that the individual component densities may modelesainderlying set ofidden classes. For example, in speaker
recognition, it is reasonable to assume the acoustic sgapeotral related features corresponding to a speaker&dpho-
netic events, such as vowels, nasals or fricatives. Thesgstc classes reflect some general speaker dependentramtal
configurations that are useful for characterizing speakemtity. The spectral shape of thth acoustic class can in turn be
represented by the mean of theith component density, and variations of the average spastiape can be represented by
the covariance matriX’;. Because all the features used to train the GMM are unlap@iedacoustic classes are hidden in
that the class of an observation is unknown. A GMM can alsoie&ed as a single-state HMM with a Gaussian mixture
observation density, or an ergodic Gaussian observatioMHdth fixed, equal transition probabilities. Assuming inde
pendent feature vectors, the observation density of featectors drawn from these hidden acoustic classes is a i@auss
mixture [2, 3].

Maximum Likelihood Parameter Estimation

Given training vectors and a GMM configuration, we wish tdreate the parameters of the GMM, which in some
sense best matches the distribution of the training featecers. There are several techniques available for estignthe
parameters of a GMM{]. By far the most popular and well-established method isimarn likelihood (ML) estimation.

The aim of ML estimation is to find the model parameters whigximize the likelihood of the GMM given the training
data. For a sequence @ftraining vectorsX = {xi,...,xr}, the GMM likelihood, assuming independence between the
vectorg, can be written as,

p(X|N) = Hp x:|\). (4)

Unfortunately, this expression is a non-linear functiomhaf parameters and direct maximization is not possible. However,
ML parameter estimates can be obtained iteratively usimpgeaial case of the expectation-maximization (EM) algoni{].

The basic idea of the EM algorithm is, beginning with an alitnodel \, to estimate a new model, such that
p(X|\) > p(X|\). The new model then becomes the initial model for the nexatilen and the process is repeated until
some convergence threshold is reached. The initial modgbisally derived by using some form of binary VQ estimation

On each EM iteration, the following re-estimation formudas used which guarantee a monotonic increase in the model’s
likelihood value,

Mixture Weights

W= O Prlibx, ). (5)

Means

T
Z Pr(i|x¢, A)

i = = ~ (6)

T
Z Pr(i|xs, \)

t=1

Variances (diagonal covariance)

[M]=

Pr(i|x¢, A)

- ﬂi27 (7)

M
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whereof, x¢, andy; refer to arbitrary elements of the vecterg, x;, andu;, respectively.

! The independence assumption is often incorrect but neededlke the problem tractable.
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Thea posteriori probability for componentis given by

i () 27
PI‘(Z.|X,§, A) _ ]ww, Q(Xf“i ) (8)
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k=1

Maximum A Posteriori (MAP) Parameter Estimation

In addition to estimating GMM parameters via the EM algaritithe parameters may also be estimated using Maximum
A Posteriori (MAP) estimation. MAP estimation is used, for example, ieager recognition applications to derive speaker
model by adapting from a universal background model (UB®}) It is also used in other pattern recognition tasks where
limited labeled training data is used to adapt a prior, galnmapdel.

Like the EM algorithm, the MAP estimation is a two step estioraprocess. The first step is identical to the “Expectdtion
step of the EM algorithm, where estimates of the sufficiemtistic$ of the training data are computed for each mixture in
the prior model. Unlike the second step of the EM algorithon gidaptation these “new” sufficient statistic estimatesiaen
combined with the “old” sufficient statistics from the prioixture parameters using a data-dependent mixing coefficidie
data-dependent mixing coefficient is designed so that mestwith high counts of new data rely more on the new sufficient
statistics for final parameter estimation and mixtures Vaitihcounts of new data rely more on the old sufficient staigstor
final parameter estimation.

The specifics of the adaptation are as follows. Given a priodeh and training vectors from the desired class,
X = {x1...,x7}, we first determine the probabilistic alignment of the tiagnvectors into the prior mixture components
(Figure2(a)). That is, for mixturé in the prior model, we computer (i|x;, )‘prior)v as in Equation§).

We then compute the sufficient statistics for the weight,mead variance paramete?s:

T
n; = ZPI‘(’”Xt, Aprior) WEIght, (9)
t=1
1 T
Ei(x) = — ZPr(ﬂXh)‘prior)Xt mean, (10)
ti=1
1 T
Ei(x2) = — > Pr(ifx, Aprior)X;  variance, (11)
bi=1

This is the same as the “Expectation” step in the EM algorithm
Lastly, these new sufficient statistics from the trainintpdare used to update the prior sufficient statistics for nned to
create the adapted parameters for mixtufieigure2(b)) with the equations:

w; = [a’ni /T + (1 — o )w;]y adapted mixture weight, (12)
f; = o Ei(x) + (1 — a;")p; adapted mixture mean, (13)
02 = alEi(x?) 4+ (1 — a¥)(o? + p?) — p2, adapted mixture variance (14)

The adaptation coefficients controlling the balance betvadé and new estimates afe”, o*, a? } for the weights, means
and variances, respectively. The scale factpis computed over all adapted mixture weights to ensure shiay to unity.
Note that the sufficient statistics, not the derived paransesuch as the variance, are being adapted.

For each mixture and each parameter, a data-dependenaadamoefficienty?, p € {w, m,v}, is used in the above
equations. This is defined as
f= T (15)

a b)
n; +1r°

2 These are the basic statistics needed to be estimated taitathe desired parameters. For a GMM mixture, these areoiimat,cand
the first and second moments required to compute the mixteighty mean and variance.
3 x2 is shorthand for diagfx )
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Fig. 2. Pictorial example of two steps in adapting a hypothesizedlsgr model. (a) The training vectors (x's) are probalikgty mapped
into the UBM (prior) mixtures. (b) The adapted mixture paetens are derived using the statistics of the new data andBié (prior)
mixture parameters. The adaptation is data dependent, 86 (gBor) mixture parameters are adapted by different antmun

wherer” is a fixed “relevance” factor for parameterlt is common in speaker recognition applications to useaataptation
coefficient for all parametersff’ = o" = af = n,/(n; + r)) and further to only adapt certain GMM parameters, such as
only the mean vectors.

Using a data-dependent adaptation coefficient allows mexdaependent adaptation of parameters. If a mixture compone
has a low probabilistic count,;, of new data, thea! — 0 causing the de-emphasis of the new (potentially undenedi
parameters and the emphasis of the old (better trainedingdeas. For mixture components with high probabilisticradsu
af — 1, causing the use of the new class-dependent parameterse[@ance factor is a way of controlling how much new
data should be observed in a mixture before the new parasrigdgin replacing the old parameters. This approach should
thus be robust to limited training data.

Related Entries

Speaker Recognition, Speaker Modeling, Speaker Matchiniyersal Background Models
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