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Synonyms

GMM; Mixture model; Gaussian mixture density

Definition

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian
component densities. GMMs are commonly used as a parametricmodel of the probability distribution of continuous measure-
ments or features in a biometric system, such as vocal-tractrelated spectral features in a speaker recognition system.GMM
parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm or MaximumA
Posteriori (MAP) estimation from a well-trained prior model.

Main Body Text

Introduction

A Gaussian mixture model is a weighted sum ofM component Gaussian densities as given by the equation,

p(x|λ) =

M
∑

i=1

wi g(x|µi,Σi), (1)

wherex is aD-dimensional continuous-valued data vector (i.e. measurement or features),wi, i = 1, . . . , M , are the mixture
weights, andg(x|µi,Σi), i = 1, . . . , M , are the component Gaussian densities. Each component density is a D-variate
Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{

−
1

2
(x − µi)

′ Σ−1

i (x − µi)

}

, (2)

with mean vectorµi and covariance matrixΣi. The mixture weights satisfy the constraint that
∑M

i=1
wi = 1.

The complete Gaussian mixture model is parameterized by themean vectors, covariance matrices and mixture weights
from all component densities. These parameters are collectively represented by the notation,
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λ = {wi, µi, Σi} i = 1, . . . , M. (3)

There are several variants on the GMM shown in Equation (3). The covariance matrices,Σi, can be full rank or constrained
to be diagonal. Additionally, parameters can be shared, or tied, among the Gaussian components, such as having a common
covariance matrix for all components, The choice of model configuration (number of components, full or diagonal covariance
matrices, and parameter tying) is often determined by the amount of data available for estimating the GMM parameters and
how the GMM is used in a particular biometric application.

It is also important to note that because the component Gaussian are acting together to model the overall feature density,
full covariance matrices are not necessary even if the features are not statistically independent. The linear combination of
diagonal covariance basis Gaussians is capable of modelingthe correlations between feature vector elements. The effect
of using a set ofM full covariance matrix Gaussians can be equally obtained byusing a larger set of diagonal covariance
Gaussians.

GMMs are often used in biometric systems, most notably in speaker recognition systems, due to their capability of rep-
resenting a large class of sample distributions. One of the powerful attributes of the GMM is its ability to form smooth
approximations to arbitrarily shaped densities. The classical uni-modal Gaussian model represents feature distributions by
a position (mean vector) and a elliptic shape (covariance matrix) and a vector quantizer (VQ) or nearest neighbor model
represents a distribution by a discrete set of characteristic templates [1]. A GMM acts as a hybrid between these two models
by using a discrete set of Gaussian functions, each with their own mean and covariance matrix, to allow a better modeling
capability. Figure1 compares the densities obtained using a unimodal Gaussian model, a GMM and a VQ model. Plot (a)
shows the histogram of a single feature from a speaker recognition system (a single cepstral value from a 25 second utterance
by a male speaker); plot (b) shows a uni-modal Gaussian modelof this feature distribution; plot (c) shows a GMM and its
ten underlying component densities; and plot (d) shows a histogram of the data assigned to the VQ centroid locations of a
10 element codebook. The GMM not only provides a smooth overall distribution fit, its components also clearly detail the
multi-modal nature of the density.
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Fig. 1.Comparison of distribution modeling. (a) histogram of a single cepstral coefficient from a 25 second utterance by a male speaker (b)
maximum likelihood uni-modal Gaussian model (c) GMM and its10 underlying component densities (d) histogram of the dataassigned to
the VQ centroid locations of a 10 element codebook.
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The use of a GMM for representing feature distributions in a biometric system may also be motivated by the intuitive
notion that the individual component densities may model some underlying set ofhidden classes. For example, in speaker
recognition, it is reasonable to assume the acoustic space of spectral related features corresponding to a speaker’s broad pho-
netic events, such as vowels, nasals or fricatives. These acoustic classes reflect some general speaker dependent vocaltract
configurations that are useful for characterizing speaker identity. The spectral shape of theith acoustic class can in turn be
represented by the meanµi of theith component density, and variations of the average spectral shape can be represented by
the covariance matrixΣi. Because all the features used to train the GMM are unlabeled, the acoustic classes are hidden in
that the class of an observation is unknown. A GMM can also be viewed as a single-state HMM with a Gaussian mixture
observation density, or an ergodic Gaussian observation HMM with fixed, equal transition probabilities. Assuming inde-
pendent feature vectors, the observation density of feature vectors drawn from these hidden acoustic classes is a Gaussian
mixture [2, 3].

Maximum Likelihood Parameter Estimation

Given training vectors and a GMM configuration, we wish to estimate the parameters of the GMM,λ, which in some
sense best matches the distribution of the training featurevectors. There are several techniques available for estimating the
parameters of a GMM [4]. By far the most popular and well-established method is maximum likelihood (ML) estimation.

The aim of ML estimation is to find the model parameters which maximize the likelihood of the GMM given the training
data. For a sequence ofT training vectorsX = {x1, . . . ,xT }, the GMM likelihood, assuming independence between the
vectors1, can be written as,

p(X |λ) =

T
∏

t=1

p(xt|λ). (4)

Unfortunately, this expression is a non-linear function ofthe parametersλ and direct maximization is not possible. However,
ML parameter estimates can be obtained iteratively using a special case of the expectation-maximization (EM) algorithm [5].

The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a new model̄λ, such that
p(X |λ̄) ≥ p(X |λ). The new model then becomes the initial model for the next iteration and the process is repeated until
some convergence threshold is reached. The initial model istypically derived by using some form of binary VQ estimation.

On each EM iteration, the following re-estimation formulasare used which guarantee a monotonic increase in the model’s
likelihood value,

Mixture Weights

w̄i =
1

T

T
∑

t=1

Pr(i|xt, λ). (5)

Means

µ̄i =

T
∑

t=1

Pr(i|xt, λ) xt

T
∑

t=1

Pr(i|xt, λ)

. (6)

Variances (diagonal covariance)

σ̄2

i =

T
∑

t=1

Pr(i|xt, λ) x2

t

T
∑

t=1

Pr(i|xt, λ)

− µ̄i
2, (7)

whereσ2

i , xt, andµi refer to arbitrary elements of the vectorsσi
2, xt, andµi, respectively.

1 The independence assumption is often incorrect but needed to make the problem tractable.
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Thea posteriori probability for componenti is given by

Pr(i|xt, λ) =
wi g(xt|µi,Σi)

M
∑

k=1

wk g(xt|µk,Σk)

(8)

Maximum A Posteriori (MAP) Parameter Estimation

In addition to estimating GMM parameters via the EM algorithm, the parameters may also be estimated using Maximum
A Posteriori (MAP) estimation. MAP estimation is used, for example, in speaker recognition applications to derive speaker
model by adapting from a universal background model (UBM) [6]. It is also used in other pattern recognition tasks where
limited labeled training data is used to adapt a prior, general model.

Like the EM algorithm, the MAP estimation is a two step estimation process. The first step is identical to the “Expectation”
step of the EM algorithm, where estimates of the sufficient statistics2 of the training data are computed for each mixture in
the prior model. Unlike the second step of the EM algorithm, for adaptation these “new” sufficient statistic estimates are then
combined with the “old” sufficient statistics from the priormixture parameters using a data-dependent mixing coefficient. The
data-dependent mixing coefficient is designed so that mixtures with high counts of new data rely more on the new sufficient
statistics for final parameter estimation and mixtures withlow counts of new data rely more on the old sufficient statistics for
final parameter estimation.

The specifics of the adaptation are as follows. Given a prior model and training vectors from the desired class,
X = {x1 . . . ,xT }, we first determine the probabilistic alignment of the training vectors into the prior mixture components
(Figure2(a)). That is, for mixturei in the prior model, we computePr(i|xt, λprior), as in Equation (8).

We then compute the sufficient statistics for the weight, mean and variance parameters:3,

ni =

T
∑

t=1

Pr(i|xt, λprior) weight, (9)

Ei(x) =
1

ni

T
∑

t=1

Pr(i|xt, λprior)xt mean, (10)

Ei(x
2) =

1

ni

T
∑

t=1

Pr(i|xt, λprior)x
2

t variance,. (11)

This is the same as the “Expectation” step in the EM algorithm.
Lastly, these new sufficient statistics from the training data are used to update the prior sufficient statistics for mixturei to

create the adapted parameters for mixturei (Figure2(b)) with the equations:

ŵi = [αw
i ni/T + (1 − αw

i )wi] γ adapted mixture weight, (12)

µ̂i = αm
i Ei(x) + (1 − αm

i )µi adapted mixture mean, (13)

σ̂2
i = αv

i Ei(x
2) + (1 − αv

i )(σ2

i + µ
2

i ) − µ̂2
i adapted mixture variance. (14)

The adaptation coefficients controlling the balance between old and new estimates are{αw
i , αm

i , αv
i } for the weights, means

and variances, respectively. The scale factor,γ, is computed over all adapted mixture weights to ensure theysum to unity.
Note that the sufficient statistics, not the derived parameters, such as the variance, are being adapted.

For each mixture and each parameter, a data-dependent adaptation coefficientαρ
i , ρ ∈ {w, m, v}, is used in the above

equations. This is defined as

αρ
i =

ni

ni + rρ
, (15)

2 These are the basic statistics needed to be estimated to compute the desired parameters. For a GMM mixture, these are the count, and
the first and second moments required to compute the mixture weight, mean and variance.

3
x

2 is shorthand for diag(xx

′

)



Gaussian Mixture Models∗ 5

Fig. 2.Pictorial example of two steps in adapting a hypothesized speaker model. (a) The training vectors (x’s) are probabilistically mapped
into the UBM (prior) mixtures. (b) The adapted mixture parameters are derived using the statistics of the new data and theUBM (prior)
mixture parameters. The adaptation is data dependent, so UBM (prior) mixture parameters are adapted by different amounts.

whererρ is a fixed “relevance” factor for parameterρ. It is common in speaker recognition applications to use oneadaptation
coefficient for all parameters (αw

i = αm
i = αv

i = ni/(ni + r)) and further to only adapt certain GMM parameters, such as
only the mean vectors.

Using a data-dependent adaptation coefficient allows mixture dependent adaptation of parameters. If a mixture component
has a low probabilistic count,ni, of new data, thenαρ

i → 0 causing the de-emphasis of the new (potentially under-trained)
parameters and the emphasis of the old (better trained) parameters. For mixture components with high probabilistic counts,
αρ

i → 1, causing the use of the new class-dependent parameters. Therelevance factor is a way of controlling how much new
data should be observed in a mixture before the new parameters begin replacing the old parameters. This approach should
thus be robust to limited training data.

Related Entries

Speaker Recognition, Speaker Modeling, Speaker Matching,Universal Background Models
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