I. Music Genre Classification

<u>Goal</u>

Classify music signal into one of the genres.

Reference

Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on speech and audio processing, 10(5), 293-302.

<u>Data</u>

 Potential Data Source (1000 tracks with 10 genres and 100 tracks per genre) <u>http://opihi.cs.uvic.ca/sound/genres.tar.gz</u>

Million song dataset
http://labrosa.ee.columbia.edu/millionsong/

II. Music Speech Discrimination From Short Audio Snippets

<u>Goal</u>

Characterize a given signal as speech or music (can also add other signal types like environmental sounds)

Reference

Chen, Lei, Sule Gunduz, and M. Tamer Ozsu. "Mixed type audio classification with support vector machine." 2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006.

<u>Data</u>

 Potential Data Source (120 tracks of speech and music (each with 30sec)) <u>http://opihi.cs.uvic.ca/sound/music_speech.tar.gz</u>

III. ECG Signal Quality Assessment

<u>Goal</u>

To predict the quality of the measured ECG signal

Reference

Behar, Joachim, et al. "ECG signal quality during arrhythmia and its application to false alarm reduction." IEEE Transactions on Biomedical Engineering 60.6 (2013): 1660-1666.

Data MIMIC-II Dataset https://physionet.org/mimic2/

MIT-DIH Arrhythmia Database https://physionet.org/physiobank/database/mitdb/

IV. EEG Signal Analysis

Goal

Identifying the presence of alcohol in the collected EEG signal - AR modeling/feature selection.

Reference

Faust, Oliver, et al. "Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques." IRBM 29.1 (2008): 44-52.

Data

Collected from 10 alcoholic and 10 normal subjects. https://archive.ics.uci.edu/ml/datasets/EEG+Database

V. Dimensionality Reduction of fMRI data

<u>Goal</u> Reducing the dimensionality of fMRI data for visualization and classification.

<u>Reference</u>

Van Der Maaten, Laurens, Eric Postma, and Jaap Van den Herik. "Dimensionality reduction: a comparative." J Mach Learn Res 10 (2009): 66-71.

<u>Data</u>

6 subjects with manual annotation http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

VI. Speaker Diarization

Goal Segment speech based on speakers

Reference

Vijayasenan, Deepu, Fabio Valente, and Hervé Bourlard. "An information theoretic approach to speaker diarization of meeting data." IEEE transactions on audio, speech, and language processing 17.7 (2009): 1382-1393.

Data

40 speakers with orthographic annotations <u>http://buckeyecorpus.osu.edu/</u>

VII. Natural and Synthetic Speech Classification

<u>Goal</u>

Classify speech as natural (genuine) or synthetic (machine generated)

Reference

Alam, Md Jahangir, et al. "Spoofing Detection on the ASVspoof2015 Challenge Corpus Employing Deep Neural Networks.

<u>Data</u>

http://datashare.is.ed.ac.uk/handle/10283/782

VIII. Whole Word Detection From Speech Using Recurrent Networks

<u>Goal</u>

Detect the presence of a keyword in speech using recurrent networks

Reference

Wöllmer, Martin, et al. "Bidirectional LSTM networks for context-sensitive keyword detection in a cognitive virtual agent framework." *Cognitive Computation* 2.3 (2010): 180-190.

<u>Data</u>

40 speakers with orthographic annotations <u>http://buckeyecorpus.osu.edu/</u>

IX. Emotion Detection from Facial Images

<u>Goal</u>

Classifying the facial image as one of 15 emotions

Reference

Azcarate, A., Hageloh, F., van De Sande, K., & Valenti, R. (2005). Automatic facial emotion recognition. University of Amsterdam Technical Report.

<u>Data</u>

11 subjects with 15 emotions http://vision.ucsd.edu/content/yale-face-database

X. Pose Estimation from Images

<u>Goal</u> Estimating the pose from image

Reference

Murphy-Chutorian, Erik, and Mohan Manubhai Trivedi. "Head pose estimation in computer vision: A survey." IEEE transactions on pattern analysis and machine intelligence 31.4 (2009): 607-626.

<u>Data</u>

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

XI. Recognizing Imagined Speech from Multi-channel EEG.

<u>Goal</u>

Recognizing speech class categories with multi-channel EEG recordings.

<u>Data</u>

http://www.cs.toronto.edu/~complingweb/data/karaOne/karaOne.html

Reference

Shunan Zhao and Frank Rudzicz (2015) Classifying phonological categories in imagined and articulated speech. In Proceedings of ICASSP 2015, Brisbane Australia.

XII. Face Recognition from Limited Data

<u>Goal</u>

Identifying faces from very limited training data

Reference

Lu, Jiwen, Yap-Peng Tan, and Gang Wang. "Discriminative multimanifold analysis for face recognition from a single training sample per person." IEEE transactions on pattern analysis and machine intelligence 35.1 (2013): 39-51.

Data

http://vision.ucsd.edu/content/yale-face-database http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html