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REGULARIZED LINEAR REGRESSION

* Optimize a modified cost function  Ep(w)+ AEw (W)




REGULARIZED LINEAR REGRESSION




Choice of Regularization Parameter
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Bias Variance 1radeoft

expected loss = (bias)? + variance + noise

where
bias)? = [ {Enly(x;D)] - hx))p(x) dx
variance = / o [{y(x; D) — Ep[y(x; D)]}?| p(x) dx
noise = /{h(x) — t}°p(x,t) dx dt




Choice of Regularization Parameter
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Figure 3.5 lllustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter A, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).




| .inear Models for Classification

* Optimize a modified cost function



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

LINEAR MODELS FOR CLASSIFICATION




Least Squares for Classification

* K-class classification problem

yk(X) = Wi X + wko

y(x) = W'X

* With 1-of-K hot encoding, and
least squares regression

Ep(W) = %n— [(XW - T)"(XW - T)]



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

LOGISTIC REGRESSION

p(x|Cy)p(Cy)

p(x|C1)p(C1) + p(x|C2)p(C2)

1
 1l+4exp(—a) o(a)

1
where we have defined
- p(x|Cy)p(C,)
a = In
p(x|C2)p(C2)
and o(a) is the logistic sigmoid function defined by |
7(a) = ———
1 + exp(—a) 1 4




Logistuc Regression

* 2- class logistic regression

p(Ci|@) = y(¢p) =0 (W' @)

N
+ Maximum likelihood solution VE(W) = Z(yn —tn) Py,
n=1

* K-class logistic regression  p(Ci|¢) = yi (@) = exp(ak)

Zj exp(a;)

. o . T
+ Maximum likelihood solution ap = Wi Q.



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

Least Squares versus Logistic Regression

* 2- class logistic regression



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

Least Squares versus Logistic Regression

\/

* 2- class logistic regression

6



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

LETS START OFF WITH SIMPLEST MODEL

+» Define the model as an affine transform

WT

wix b

b

X
W11 + Wolo + Wwsrs + ... WDITD T+ b
+ Convert the values to probabilities

wix+b>0—2eC p(C1|x) = o(w' x +b)
WTX -+ b<(0—xc€ CQ p(CQ X) — —p(Cl‘X)




LETS START OFF WITH SIMPLEST MODEL

« Sigmoid function

B 1
14 ea

o(a)

+ Convert the values to probabilities 6 _4

wix+b>0—x2eC,
wix+b<0—xel




HOW DO WE FIND THE MODEL PARAMETERS

+ (Given a set of training data

» The targets 1X1, X2, ... XN | th, =1 for x, € C;
{t1,to, ... tN} tn, =0 for x, € Qs

> The model outputs Yp, = O'(WTXn + b)

> probability when t, =1 — fln

> probability when tp =0 — (1 = y”)(l_tn)

> Jointly p(yn) = Yy (1 = yn) 174

LEAP



TOTAL PROBABILITY

+ Each data sample is independent

Yn = o(W' X,, + b)

N
+ Log total probability log p([y1,ys..., yn]) = Z tnlog yn + (1 —ty)log (1 — yy)

n=1

LEAP



HOW DO WE FIND THE MODEL PARAMETERS

+ We want to maximize the total probability

» Or equivalently minimize the negative log probability

N _
E(w,b) = — Z tnlog vy, + (1 —ty)log (1 — yn)

-n=1

T O'(WTXn + b)

» The parameters of the model need to solved based on the minimizing the error
» This error function is non convex in the parameters

7=y Need to perform iterative update —> Gradient descent




NON-CONVYEX OPTIMIZATION

+» Local maxima and minima

Local Maxima

LocallMaxima
Local Maxima

Local Minima

Local Minima




GRADIENT DESCENT ALGORITHM

+ Start with random weights

iter t=0— w",b°

+ Compute gradients and update the model iteratively

b1 OF
w'=w' —n—
ow w,b=wt—1 pt—1

OF
bt _ bt—l —n
0b w,b=wt—1 pt—1

wr&heck for convergence —> If not, ¢ =¢+ 1 and go to the step above.




LEARNING RATE

. loss
®Solving a non-convex

optimization.
low learning rate

® [terative solution.

i e s high learning rate
® Depends on the initialization.

® Convergence to a local optima.

good learning rate il

epoch




ERROR FUNCTION REVISITED

+ [terative solution is also possible.

v Move the parameters in the negative direction of the gradient

Negative gradient Positive gradient Negative gradient  Zero gradient




GRADIENT DESCENT ALGORITHM
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GRADIENT DESCENT ALGORITHM




BACK TO OUR PROBLEM

Logistic Regression Epoch O
6 -j===iTnie Separation Line
- Fitting Separation Line
e Y=1 ®

4- ® Y=0

X1




MULTI-CLASS LOGISTIC REGRESSION

+ QOutputs are

y = softmax(W*x + b)

» Targets are one hot encoded vectors !

+» Error function

E(W.,b) ==Y ) tu log yn
n k

> Cross entropy function




STOCHASTIC GRADIENT DESCENT

+ The total error is a sum of errors in all the data samples

N _
E(w,b) = — Z tnlog vy, + (1 —ty)log (1 — yn)

-n=1

» May be too slow - requiring a large number of updates betore convergence.

» Can we take a subset of the data and perform gradient descent and update the model
on the subset ?




STOCHASTIC GRADIENT DESCENT

+ Split the data into random chunks

Model Model

Training Validatio

\ Given labeled data \

» perform gradient updates on each mini batch

» assumption - gradients computed on the mini-batch well approximate the full batch

W=

ﬁ oradients




STOCHASTIC GRADIENT DESCENT

+ Split the data into random chunks

Model Model

Training Validatio

Given labeled data \

> hyper-parameters

s¥ybatch size
R ‘ "\

t‘\\\_‘,l!’,"
N Yo
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