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LINEAR REGRESSION
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LINEAR REGRESSION WITH POLYNOMIAL BASIS
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LINEAR REGRESSION

t =y(X, W)+ €

+ Solution to Maximum Likelihood problem is the least
squares solution
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LINEAR REGRESSION - CHOICE ©F BASIS
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.




LINEAR REGRESSION - GEOMETRY
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REGULARIZED LINEAR REGRESSION

* Optimize a modified cost function  Ep(w)+ AEw (W)




REGULARIZED LINEAR REGRESSION




Choice of Regularization Parameter
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Bias Variance 1radeoft

expected loss = (bias)? + variance + noise

where
bias)? = [ {Enly(x;D)] - hx))p(x) dx
variance = / o [{y(x; D) — Ep[y(x; D)]}?| p(x) dx
noise = /{h(x) — t}°p(x,t) dx dt




Choice of Regularization Parameter
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Figure 3.5 lllustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter A, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).




| .inear Models for Classification

* Optimize a modified cost function

‘LEAP


http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

LINEAR MODELS FOR CLASSIFICATION




Least Squares for Classification

* K-class classification problem

yk(X) = Wi X + wko

y(x) = W'X

* With 1-of-K hot encoding, and
least squares regression

Ep(W) = %n— [(XW - T)"(XW - T)]



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

LOGISTIC REGRESSION

p(x|Cy)p(Cy)

p(x|C1)p(C1) + p(x|C2)p(C2)

1
 1l+4exp(—a) o(a)

1
where we have defined
- p(x|Cy)p(C,)
a = In
p(x|C2)p(C2)
and o(a) is the logistic sigmoid function defined by |
7(a) = ———
1 + exp(—a) 1 4




Logistic Regression

* 2- class logistic regression

+ Maximum likelihood solution VE(W) = Z(yn —tn) Py,

* K-class logistic regression  p(Ci|¢) = yi (@) = exp(ak)

. o . T
+ Maximum likelihood solution ap = Wi Q.
N
Ve, EW1, ..., WE) =Y (Ynj — tnj) D,

n=1
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Established



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf

Least Squares versus Logistic Regression

* 2- class logistic regression



http://mlsp.cs.cmu.edu/courses/fall2014/lectures/slides/class10.nmf.pdf
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