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Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is defined as

p(x|®) = Zakp x|0})

1

\/(ZW)D

The weighting coefficients have the property
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k=1

1 N
p(x|0k) = |Ek|exp{ 2(X_p'k) i ( Mk)}




MLE for GMM

+ The log-likelihood function over the entire data in this case will have a logarithm of a

summation

N K
log L(®) = Zlog (Zakp(x?;\Bk))

+ Solving for the optimal parameters using MLE for GMM is not straight forward.

+ Resort to the Expectation Maximization (EM) algorithm




EM Algorithm for GMM

v The hidden variables will be the index of the mixture component which

generated

v Re-estimation formulae
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Expectation Maximization Algorithm

- Iterative procedure.

- Assume the existence of hidden variable z;
associated with each data sample x;

- Let the current estimate (at iteration n) be ®"
Define the Q function as

Q(®7 (-)n) — Ez\X,@” :log(P(Xv Z‘G)
= ) log(P(X,z|®))P(z|X,0")




Expectation Maximization Algorithm

- It can be proven that if we choose
O" = arg max R(O,0")
then L(@"“) > L(O")

- In many cases, finding the maximum for the Q
function may be easier than likelihood function
w.r.t. the parameters.

- Solution is dependent on finding a good choice of
the hidden variables which eases the computation




EM Algorithm Summary

- Initialize with a set of model parameters (n=1)

- Compute the conditional expectation (E-step)
E,x,e | log(P(X,z|©)

- Maximize the conditional expectation w.r.t.
parameter. (M-step) (n = n+1)

- Check for convergence

-+ Go back to E-step if model has not converged.




EM Algorithm for GMM

- The hidden variables z; = [ will be the index of the
mixture component which generated x;

- Re-estimation formulae
1 N
O:?’ew — N Zp(flmi, @g)
=1

“?ew _ Zf\il :B,;p(f\azi, @g)
Zfil p(fla:z-,(-)g)
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EM Algorithm for GMM

ANEMIA PATIENTS AND CONTROLS
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EM Algorithm for GMM

EM ITERATION 1
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EM Algorithm for GMM

EM ITERATION 3
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EM Algorithm for GMM

EM ITERATION 5
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EM Algorithm for GMM

EM ITERATION 10
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EM Algorithm for GMM

EM ITERATION 15
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EM Algorithm for GMM

EM ITERATION 25
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EM Algorithm for GMM

ANEMIA DATA WITH LABELS
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K-means Algorithm for Initialization
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Other Considerations

- |Initialization - random or k-means

- Number of Gaussians
- Type of Covariance matrix

- Spherical covariance

-Less precise.
-Very efficient to compute.




Other Considerations

- |Initialization - random or k-means

- Number of Gaussians
- Type of Covariance matrix

- Diagonal covariance

-More precise.
o -Efficient to compute.




Other Considerations

- |Initialization - random or k-means

- Number of Gaussians
- Type of Covariance matrix

- Full covariance

-Very precise.
-Less efficient to compute.
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LINEAR REGRESSION

M—1
y(X, W) = Z w;d;(X) = W' @(x)
=0
Example
M
e w)— . wE LanE - wyr! = Z'wja:]
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LINEAR REGRESSION WITH POLYNOMIAL BASIS

1t O—0 M=0 - 1r




LINEAR REGRESSION

t =y(X, W)+ €

+ Solution to Maximum Likelihood problem is the least
squares solution

Vinptw,3) =

Mz

{t —wqb }(f)




LINEAR REGRESSION - CHOICE ©F BASIS

0.75

0.5

0.25

Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.




LINEAR REGRESSION - GEOMETRY

',
1 y

LEAP



REGULARIZED LINEAR REGRESSION

* Optimize a modified cost function  Ep(w)+ AEw (W)




REGULARIZED LINEAR REGRESSION
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