MACHINE LEARNING FOR SIGNAL PROCESSING 20 - 1 - 2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/

DECISION THEORY (PRML CHAP. 1.5)

- **Decision Theory** *
 - Inference problem
 - Finding the joint density
 - Decision problem $p(\mathbf{x}, \mathbf{t})$
 - Using the inference to make the classification or regression decision

DECISION PROBLEM - CLASSIFICATION

- Minimizing the mis-classification error
- Decision based on maximum posteriors

 $argmax_j p(C_j|\mathbf{x})$

- Loss matrix
 - Minimizing the expected loss

VISUALIZING THE MAX. POSTERIOR CLASSIFIER

APPROACHES FOR INFERENCE AND DECISION

I. Finding the joint density from the data.

II. Finding the posteriors directly. $p(C_k|\mathbf{x}) \alpha p(\mathbf{x}|C_k)p(C_k)$

III. Using discriminant functions for classification.

Decision Rule for Regression

* Minimum mean square error loss

* Solution is conditional expectation.

GENERATIVE MODELING

Collection of probability distributions which are described by a finite * dimensional parameter set

Generative

Non-parametric Modeling • Non-parametric models do not specify an apriori set of parameters to model the distribution. Example - Histogram

The density is not smooth and has block like shape.

ΛP.

Non-parametric Modeling

- the distribution.
 - Example Kernel Density Estimators

$$f_h(\mathbf{x}) = \sum_{i=1}^N K_h\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Kernel is a smooth function which obeys certain properties

• Non-parametric models do not specify an apriori set of parameters to model

Non-parametric Modeling

- Non-parametric methods are dependent on number of data points
 - Estimation is difficult for large datasets.
- Likelihood computation and model comparisons are hard.
- Limited use in classifiers

Parametric Models (Chap 2 PRML)

Collection of probability distributions which are described by a finite dimensional parameter set

$$\boldsymbol{\theta} = (\theta_1, \theta_2, ... \theta_K)$$

- Examples -
 - Poisson Distribution

 $p_{\lambda}($

- Bernoulli Distribution
- Gaussian Distribution

$$K) \qquad P = \{P_{\theta}\}$$
$$p_{\lambda}(j) = \frac{\lambda^{j}}{j!}e^{-\lambda}$$
$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{i=1}^{D} \mu_{i}^{x_{i}}(1-\mu_{i})^{x_{i}}$$

 $p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^* \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$

P

One of most widely used and well studied model

Points of equal probability lie on on contour **Diagonal Gaussian with Identical Variance**

P

Insights into two dimensional Gaussian distribution

Diagonal Gaussian with different variance

Insights into two dimensional Gaussian Distribution

Full covariance Gaussian distribution

Fitting the data with a Gaussian Model

Finding the parameters of the Model

- The Gaussian model has the following parameters
 - $\boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- In the second secon
- \checkmark Given N data points $\{\mathbf{x}_i\}_{i=1}^N$ how do we estimate the parameters of model.
 - Several criteria can be used
 - The most popular method is the maximum likelihood estimation (MLE).

Define the likelihood function as

The maximum likelihood estimator (MLE) is

The MLE satisfies nice properties like

- Consistency (covergence to true value)
- Efficiency (has the least Mean squared error).

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i | \boldsymbol{\theta})$$

- $\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$

For the Gaussian distribution

To estimate the parameters

 $\log L(\boldsymbol{\theta}) = -\frac{ND}{2} - \frac{N}{2} \log |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{N} \left((\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) \right)$

 $\frac{\partial \log L}{\partial \boldsymbol{\mu}}$

ΛP.

Often the data lies in clusters (2-D example)

Fitting a single Gaussian model may be too broad.

Need mixture models

Can fit any arbitrary distribution.

Often the data lies in clusters

1-D example

Gaussian Distribution Summary

- ✓ The Gaussian model parametric distributions
- Simple and useful properties.
- Can model unimodal (single peak distributions)
- MLE gives intuitive results
- Issues with Gaussian model
 - Multi-modal data
 - Not useful for complex data distributions

Need for mixture models

Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is defined as

 $p(\mathbf{x}|\mathbf{\Theta}) =$ $p(\mathbf{x}|\boldsymbol{\theta}_k) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}_k|}}$

The weighting coefficients have the property

$$= \sum_{k=1}^{K} \alpha_k p(\mathbf{x}|\boldsymbol{\theta}_k)$$
$$= exp\left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^* \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) \right\}$$

$$\alpha_k = 1$$

Gaussian Mixture Models

- Properties of GMM
 - ✓ Can model multi-modal data.
 - ✓ Identify data clusters.
 - Can model arbitrarily complex data dist

The set of parameters for the model are $\boldsymbol{\Theta}_{k} = \{\alpha_{k}, \boldsymbol{\theta}_{k}\}_{k=1}^{K} \quad \boldsymbol{\theta}_{k} = \{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\}$ The number of parameters is $KD^2 + KD + K$

MLE for GMM

- summation
 - $\log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \log L(\boldsymbol{\Theta})$
- * Solving for the optimal parameters using MLE for GMM is not straight forward.
- * Resort to the Expectation Maximization (EM) algorithm

* The log-likelihood function over the entire data in this case will have a logarithm of a

$$\log\left(\sum_{k=1}^{K} \alpha_k p(\mathbf{x}_i | \boldsymbol{\theta}_k)\right)$$

EM Algorithm For GMMs

EM Algorithm for GMM

The hidden variables will be the index of the mixture component which generated

Re-estimation formulae

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

