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Decision Theory (PRML Chap. 1.5)
❖ Decision Theory 

✓ Inference problem

๏ Finding the joint density 

✓ Decision problem

๏ Using the inference to make the classification or regression decision



Decision Problem - Classification
✓ Minimizing the mis-classification error

✓ Decision based on maximum posteriors

✓ Loss matrix 

๏ Minimizing the expected loss 



Visualizing the Max. Posterior Classifier



Approaches for Inference and Decision
I. Finding the joint density from the data.

II. Finding the posteriors directly.

III. Using discriminant functions for classification.



Advantage of Posteriors



Decision Rule for Regression

❖ Minimum mean square error loss

❖ Solution is conditional expectation.



Generative Modeling
❖ Collection of probability distributions which are described by a finite 

dimensional parameter set 

Classifiers

Generative

Parametric

Non-
parametric



Non-parametric Modeling
• Non-parametric models do not specify an apriori set of 

parameters to model the distribution. Example - Histogram 
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The density is not smooth and has block like shape.



Non-parametric Modeling
• Non-parametric models do not specify an apriori set of parameters to model 

the distribution.

• Example - Kernel Density Estimators 
Histogram
Kernel Density

Kernel is a smooth function which obeys certain properties



Non-parametric Modeling
• Non-parametric methods are dependent on number of data points

• Estimation is difficult for large datasets.

• Likelihood computation and model comparisons are hard.

• Limited use in classifiers



Parametric Models (Chap 2 PRML)
❖ Collection of probability distributions which are described by a finite 

dimensional parameter set 

• Examples -

• Poisson Distribution

• Bernoulli Distribution

• Gaussian Distribution



Gaussian Distribution
One of most widely used and well studied model

Points of equal probability lie on on contour
Diagonal Gaussian with Identical Variance



Gaussian Distribution
Insights into two dimensional Gaussian distribution

Diagonal Gaussian with different variance



Gaussian Distribution
Insights into two dimensional Gaussian Distribution

Full covariance Gaussian distribution



Gaussian Distribution
Fitting the data with a Gaussian Model



Finding the parameters of the Model
✓ The Gaussian model has the following parameters

✓ Total number of parameters to be learned for D dimensional data is 

✓ Given N data points             how do we estimate the parameters of 
model.

➡ Several criteria can be used

➡ The most popular method is the maximum likelihood estimation 
(MLE).



MLE
Define the likelihood function as 

The maximum likelihood estimator (MLE) is 

The MLE satisfies nice properties like

- Consistency (covergence to true value)

- Efficiency (has the least Mean squared error).



MLE
For the Gaussian distribution 

To estimate the parameters



Gaussian Distribution
Often the data lies in clusters (2-D example)

Fitting a single Gaussian model may be too broad.



Gaussian Distribution
Need mixture models

Can fit any arbitrary distribution.



Gaussian Distribution
Often the data lies in clusters 1-D example



Gaussian Distribution Summary
✓ The Gaussian model - parametric distributions

✓ Simple and useful properties.

✓ Can model unimodal (single peak distributions)

✓ MLE gives intuitive results

✓ Issues with Gaussian model

๏ Multi-modal data 

๏ Not useful for complex data distributions

✓ Need for mixture models 



Gaussian Mixture Models
A Gaussian Mixture Model (GMM) is defined as 

The weighting coefficients have the property



The number of parameters is 

Gaussian Mixture Models
❖ Properties of GMM 

✓ Can model multi-modal  data. 

✓ Identify data clusters. 

✓ Can model arbitrarily complex data distributions

The set of parameters for the model are 



MLE for GMM
❖ The log-likelihood function over the entire data in this case will have a logarithm of a 

summation 

❖ Solving for the optimal parameters using MLE for GMM is not straight forward. 

❖ Resort to the Expectation Maximization (EM) algorithm



EM Algorithm For GMMs



EM Algorithm for GMM
✓ The hidden variables will be the index of the mixture component which 

generated 

✓ Re-estimation formulae

E-step M-step
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