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Principal Component Analysis

❖ Reducing the data       of dimension      to lower dimension  

❖ Projecting the data into subspace which preserves maximum data variance 

✓ Maximize variance in projected space 

❖ Equivalent formulated as minimizing the error between the original and projected 
data points. 



Whitening VS decorrelations



Application 
❖ Wisconsin Cancer dataset (https://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+(Diagnostic) 

❖ 569 participants 

❖ 212 (M) 357 (B) 

❖ 30 features —> digitized image of a fine needle aspirate (FNA) of a breast mass. The 
features describe characteristics of the cell nuclei present in the image.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Raw Features



PCA 



Without the Within Class Factor



Linear Discriminant Analysis

Find a linear transform                      with a criterion which 
maximizes the class separation 

• Maximize the between class distance in the projected space 
while minimizing the within class covariance

❖ Generalized Eigenvalue problem

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

Eigen analysis of 



Linear Discriminant Analysis
Projecting on line joining means Fisher Discriminant

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)



PCA versus lda



Linear Discriminant Analysis

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

PCA

LDA



Decision Theory (PRML Chap. 1.5)
❖ Decision Theory 

✓ Inference problem

๏ Finding the joint density 

✓ Decision problem

๏ Using the inference to make the classification or regression decision



Decision Problem - Classification
✓ Minimizing the mis-classification error

✓ Decision based on maximum posteriors

✓ Loss matrix 

๏ Minimizing the expected loss 



Visualizing the Max. Posterior Classifier



Approaches for Inference and Decision
I. Finding the joint density from the data.

II. Finding the posteriors directly.

III. Using discriminant functions for classification.



Advantage of Posteriors



Decision Rule for Regression

❖ Minimum mean square error loss

❖ Solution is conditional expectation.



Generative Modeling
❖ Collection of probability distributions which are described by a finite 

dimensional parameter set 

Classifiers

Generative

Parametric

Non-
parametric



Non-parametric Modeling
• Non-parametric models do not specify an apriori set of 

parameters to model the distribution. Example - Histogram 
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The density is not smooth and has block like shape.



Non-parametric Modeling
• Non-parametric models do not specify an apriori set of parameters to model 

the distribution.

• Example - Kernel Density Estimators 
Histogram
Kernel Density

Kernel is a smooth function which obeys certain properties



Non-parametric Modeling
• Non-parametric methods are dependent on number of data points

• Estimation is difficult for large datasets.

• Likelihood computation and model comparisons are hard.

• Limited use in classifiers



Parametric Models (Chap 2 PRML)
❖ Collection of probability distributions which are described by a finite 

dimensional parameter set 

• Examples -

• Poisson Distribution

• Bernoulli Distribution

• Gaussian Distribution



Gaussian Distribution
One of most widely used and well studied model

Points of equal probability lie on on contour
Diagonal Gaussian with Identical Variance



Gaussian Distribution
Insights into two dimensional Gaussian distribution

Diagonal Gaussian with different variance



Gaussian Distribution
Insights into two dimensional Gaussian Distribution

Full covariance Gaussian distribution



Gaussian Distribution
Fitting the data with a Gaussian Model



Finding the parameters of the Model
✓ The Gaussian model has the following parameters

✓ Total number of parameters to be learned for D dimensional data is 

✓ Given N data points             how do we estimate the parameters of 
model.

➡ Several criteria can be used

➡ The most popular method is the maximum likelihood estimation 
(MLE).



MLE
Define the likelihood function as 

The maximum likelihood estimator (MLE) is 

The MLE satisfies nice properties like

- Consistency (covergence to true value)

- Efficiency (has the least Mean squared error).



MLE
For the Gaussian distribution 

To estimate the parameters



THANK YOU

Sriram Ganapathy and TA team 
LEAP lab, C328, EE, IISc 

sriramg@iisc.ac.in 

mailto:sriramg@iisc.ac.in

