MACHINE LEARNING FOR SIGNAL PROCESSING 15 - 1 - 2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/

PRINCIPAL COMPONENT ANALYSIS

- Reducing the data \mathbf{x}_n of dimension D to lower dimension
- Projecting the data into subspace which preserves maximum data variance
 - ✓ Maximize variance in projected space M < D
- Equivalent formulated as minimizing the error between the original and projected data points.

WHITENING VS DECORRELATIONS

APPLICATION

- Wisconsin Cancer dataset (<u>https://archive.ics.uci.edu/ml/datasets/</u> * <u>Breast+Cancer+Wisconsin+(Diagnostic)</u>
- 569 participants
- ✤ 212 (M) 357 (B)
- * features describe characteristics of the cell nuclei present in the image.

30 features \longrightarrow digitized image of a fine needle aspirate (FNA) of a breast mass. The

Raw Features

	l
	1
	1
_	
_	
	1
	1
	1
-	

PCA

WITHOUT THE WITHIN CLASS FACTOR

LINEAR DISCRIMINANT ANALYSIS

Generalized Eigenvalue problem

Find a linear transform $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with a criterion which maximizes the class separation

 Maximize the between class distance in the projected space while minimizing the within class covariance

$$\mathbf{y} = \mathbf{w}^T \mathbf{S}_w \mathbf{w}$$

 $\mathbf{S}_b = \sum_{k=1}^K N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^T \quad \mathbf{S}_w = \sum_{k=1}^K \sum_{n \in C_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^T$

Eigen analysis of $S_{m}^{-1}S_{b}$

 $\mathbf{J} = \mathbf{w}^T \mathbf{S}_b \mathbf{w}$

ΛP.

Projecting on line joining means

Fisher Discriminant

PRML - *C. Bishop* (*Sec.* 4.1.4, *Sec.* 4.1.6)

LINEAR DISCRIMINANT ANALYSIS

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

DECISION THEORY (PRML CHAP. 1.5)

- Decision Theory *
 - Inference problem
 - Finding the joint density
 - Decision problem

Using the inference to make the classification f(x, t) regression decision

DECISION PROBLEM - CLASSIFICATION

- Minimizing the mis-classification error
- Decision based on maximum posteriors

 $argmax_j p(C_j|\mathbf{x})$

- Loss matrix
 - Minimizing the expected loss

VISUALIZING THE MAX. POSTERIOR CLASSIFIER

APPROACHES FOR INFERENCE AND DECISION

I. Finding the joint density from the data.

II. Finding the posteriors directly. $p(C_k|\mathbf{x}) \alpha p(\mathbf{x}|C_k)p(C_k)$

III. Using discriminant functions for classification.

Decision Rule for Regression

* Minimum mean square error loss

* Solution is conditional expectation.

GENERATIVE MODELING

Collection of probability distributions which are described by a finite * dimensional parameter set

Generative

Non-parametric Modeling • Non-parametric models do not specify an apriori set of parameters to model the distribution. Example - Histogram

The density is not smooth and has block like shape.

ΛP.

Non-parametric Modeling

- the distribution.
 - Example Kernel Density Estimators

$$f_h(\mathbf{x}) = \sum_{i=1}^N K_h\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Kernel is a smooth function which obeys certain properties

• Non-parametric models do not specify an apriori set of parameters to model

Non-parametric Modeling

- Non-parametric methods are dependent on number of data points
 - Estimation is difficult for large datasets.
- Likelihood computation and model comparisons are hard.
- Limited use in classifiers

Parametric Models (Chap 2 PRML)

Collection of probability distributions which are described by a finite dimensional parameter set

$$\boldsymbol{\theta} = (\theta_1, \theta_2, ... \theta_K)$$

- Examples -
 - Poisson Distribution

 p_{λ} (

- Bernoulli Distribution
- Gaussian Distribution

$$K) \qquad P = \{P_{\theta}\}$$
$$p_{\lambda}(j) = \frac{\lambda^{j}}{j!}e^{-\lambda}$$
$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{i=1}^{D} \mu_{i}^{x_{i}}(1-\mu_{i})^{x_{i}}$$

 $p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^* \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$

P

One of most widely used and well studied model

Points of equal probability lie on on contour **Diagonal Gaussian with Identical Variance**

P

Insights into two dimensional Gaussian distribution

Diagonal Gaussian with different variance

Insights into two dimensional Gaussian Distribution

Full covariance Gaussian distribution

Fitting the data with a Gaussian Model

Finding the parameters of the Model

- The Gaussian model has the following parameters
 - $\boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- In the second secon
- \checkmark Given N data points $\{\mathbf{x}_i\}_{i=1}^N$ how do we estimate the parameters of model.
 - Several criteria can be used
 - The most popular method is the maximum likelihood estimation (MLE).

Define the likelihood function as

The maximum likelihood estimator (MLE) is

The MLE satisfies nice properties like

- Consistency (covergence to true value)
- Efficiency (has the least Mean squared error).

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i | \boldsymbol{\theta})$$

- $\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$

For the Gaussian distribution

To estimate the parameters

 $\log L(\boldsymbol{\theta}) = -\frac{ND}{2} - \frac{N}{2} \log |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{N} \left((\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) \right)$

 $\frac{\partial \log L}{\partial \boldsymbol{\mu}}$

ΛP.

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

