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VECTOR Calculus

➤

Let denote a real n dimensional vector  and let  denote a scalar function which maps 

➤

Then, we define  is derivate of the function  w.r.t. 

➤ Question :

✴ What is the derivative of  

✴ What is the derivative of 
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f(x) = aT x

f(x) = xT x



Vector derivatives

➤

Let denote a real n dimensional vector  and let  denote a vector function which maps  

…                         Let          

➤

Then, we define  is derivate of the function  w.r.t.  … The derivative 
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Matrix derivatives

➤

Let denote a real m x n matrix and let  denote a scalar function which 

maps                        

➤

Then, we define  is derivate of the function  w.r.t.  …

➤ This derivative 
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Matrix derivative problems 

➤ Question :

✴ What is the derivative of  w.r.t  

✴ What is the derivative of  w.r.t  

✴ What is the derivative of  w.r.t 

✴ What is the derivative of  w.r.t 

✴ What is the derivative of  w.r.t 

✴ What is the derivative of  w.r.t 

f(x) = xT Ax x

f(A) = xT Ax A

f(A) = Tr(A) A

f(A) = Tr(AB) A

f(A) = Tr(ABAT) A

f(A) = log |A | A



Principal Component Analysis

❖ Reducing the data       of dimension      to lower dimension  

❖ Projecting the data into subspace which preserves maximum data variance 

✓ Maximize variance in projected space 

❖ Equivalent formulated as minimizing the error between the original and projected 
data points. 



Direction of Maximum Variance



PCA Example



Principal Component Analysis
❖ First      eigenvectors of data covariance matrix  

❖ Residual error from PCA 

PRML - C. Bishop (Sec. 12.1)



PCA 
❖ First   eigenvectors of data covariance matrix  

❖ Residual error from PCA 

Handwritten digits used for PCA training…

PRML - C. Bishop (Sec. 12.1)



PCA 

Eigen Values
Residual Error

PRML - C. Bishop (Sec. 12.1)



PCA - Reconstruction

Eigenvectors

PCA - Reconstruction

PRML - C. Bishop (Sec. 12.1)



PCA Summary



Visualizing PCA



Whitening the Data 

Original Data WhiteningStandardization

PRML - C. Bishop (Sec. 12.1)



Application 
❖ Wisconsin Cancer dataset (https://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+(Diagnostic) 

❖ 569 participants 

❖ 212 (M) 357 (B) 

❖ 30 features —> digitized image of a fine needle aspirate (FNA) of a breast mass. The 
features describe characteristics of the cell nuclei present in the image.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Raw Features



PCA 
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