MACHINE LEARNING FOR SIGNAL PROCESSING 8-1-2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

> Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science. viveka.sg@gmail.com varadar2000@gmail.com

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/

► Question :

* What is the derivative of $f(x) = a^T x$

* What is the derivative of $f(x) = x^T x$

VECTOR DERIVATIVE
Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 denote a real n dimensional vector $\in \mathscr{R}$
... Let $f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$
Then, we define $\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$ is derivate

 $\mathbb{R}^{n \times 1}$ and let f(x) denote a vector function which maps $\mathbb{R}^n \to \mathbb{R}^m$

of the function f(x) w.r.t. x ... The derivative $\in \mathscr{R}^{m \times n}$

MATRIX DERIVATIVES

Let $A = \begin{bmatrix} a_{11}a_{12} \dots a_{1n} \\ a_{21}a_{22} \dots a_{2n} \\ \vdots \\ a_{m1}a_{m2} \dots a_{mn} \end{bmatrix}$ denote a real m x n matrix and let f(A) denote a scalar function which maps $\mathscr{R}^{m \times n} \to \mathscr{R}$

Then, we define $\frac{\partial f}{\partial A} = \begin{bmatrix} \frac{\partial f}{\partial a_{11}} & \frac{\partial f}{\partial a_{12}} & \frac{\partial f}{\partial a_{1n}} \\ \frac{\partial f}{\partial a_{21}} & \frac{\partial f}{\partial a_{22}} & \frac{\partial f}{\partial a_{2n}} \\ \vdots \\ \frac{\partial f}{\partial a_{m1}} & \frac{\partial f}{\partial a_{m2}} & \frac{\partial f}{\partial a_{mn}} \end{bmatrix}$ is derivate of the function f(A) w.r.t. A ...

► This derivative $\in \mathscr{R}^{m \times n}$

MATRIX DERIVATIVE PROBLEMS

Question :

- * What is the derivative of $f(x) = x^T A x$ w.r.t x
- * What is the derivative of $f(A) = x^T A x$ w.r.t A
- * What is the derivative of f(A) = Tr(A) w.r.t A
- * What is the derivative of f(A) = Tr(AB) w.r.t A
- * What is the derivative of $f(A) = Tr(ABA^{T})$ w.r.t A
- * What is the derivative of f(A) = log |A| w.r.t A

PRINCIPAL COMPONENT ANALYSIS

- Reducing the data \mathbf{x}_n of dimension D to lower dimension
- Projecting the data into subspace which preserves maximum data variance
 - ✓ Maximize variance in projected space M < D
- Equivalent formulated as minimizing the error between the original and projected data points.

DIRECTION OF MAXIMUM VARIANCE

PRINCIPAL COMPONENT ANALYSIS

• First *M* eigenvectors of data covariance matrix

Residual error from PCA

PRML - *C. Bishop* (*Sec.* 12.1)

 $S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$

First eigenvectors of data covariance matrix

Residual error from PCA

Handwritten digits used for PCA training...

PRML - C. Bishop (Sec. 12.1)

LEAP.

PRML - *C. Bishop* (*Sec.* 12.1)

PCA - RECONSTRUCTION

Eigenvectors

 $\lambda_2 = 2.8 \cdot 10^5$

M = 1

$$\lambda_3 = 2.4 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

PCA - Reconstruction

PRML - C. Bishop (Sec. 12.1)

PCA Summary

Copyright © 2011 Victor Lavrenko

Visualizing PCA

WHITENING THE DATA

Original Data

Standardization

Whitening

APPLICATION

- Wisconsin Cancer dataset (<u>https://archive.ics.uci.edu/ml/datasets/</u> * <u>Breast+Cancer+Wisconsin+(Diagnostic)</u>
- 569 participants
- ✤ 212 (M) 357 (B)
- * features describe characteristics of the cell nuclei present in the image.

30 features \longrightarrow digitized image of a fine needle aspirate (FNA) of a breast mass. The

Raw Features

	l
	1
	1
_	
_	
	1
	1
	1
-	

nenu	5 -	
al compo	0 -	
	-5 -	
Secol	-10 -	

*

PCA

-15

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

