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Graphical Models



Graphical Models

• What are graphs


✴What are graphical models


• Directed and Undirected graphs


• Conditional independence 



Hidden Markov 
Models

Adapted from 
Dr Catherine Sweeney-Reed’s 
slides



Summary

■ Introduction 
■ Description 
■ Central problems in HMM modelling 
■ Extensions 
■ Demonstration



Specification of an HMM

■ N - number of states 
□Q = {q1; q2; : : : ;qT} - set of states 
■ M - the number of symbols (observables) 
□O = {o1; o2; : : : ;oT} - set of symbols

Description



Specification of an HMM

■ A - the state transition probability matrix 
□aij = P(qt+1 = j|qt = i) 
■ B- observation probability distribution 
□bj(k) = P(ot = k|qt = j)    i ≤ k ≤ M 
■ π - the initial state distribution

Description



Specification of an HMM

■ Full HMM is thus specified as a triplet: 
□λ = (A,B,π)

Description



Central problems in HMM modelling

■ Problem 1 
 Evaluation: 
□Probability of occurrence of a particular 

observation sequence, O = {o1,…,ok}, given the 
model 

□P(O|λ)  
□Complicated – hidden states 
□Useful in sequence classification

Central 
problems



Central problems in HMM modelling

■ Problem 2 
 Decoding: 
□Optimal state sequence to produce given 

observations, O = {o1,…,ok}, given model 
□Optimality criterion 
□Useful in recognition problems

Central 
problems



Central problems in HMM modelling

■ Problem 3 
 Learning: 
□Determine optimum model, given a training set 

of observations 
□Find λ, such that P(O|λ) is maximal

Central 
problems



Problem 1: Naïve solution

■ State sequence Q = (q1,…qT) 
■ Assume independent observations:
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Central 
problems

NB Observations are mutually independent, given the 
hidden states. (Joint distribution of independent 
variables factorises into marginal distributions of the 
independent variables.)



Problem 1: Naïve solution

■ Observe that : 

■ And that:
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Central 
problems
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Problem 1: Naïve solution

■ Finally get:

Central 
problems
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NB: 
-The above sum is over all state paths 
-There are NT states paths,  each ‘costing’ 
 O(T) calculations, leading to O(TNT) 
 time complexity.



Problem 1: Efficient solution

■ Define auxiliary forward variable α:

Central 
problems
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αt(i) is the probability of observing a partial sequence of 
observables o1,…ot such that at time t, state qt=i

Forward algorithm:



Problem 1: Efficient solution
■ Recursive algorithm: 
□ Initialise: 

□Calculate: 

□Obtain:
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Central 
problems
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Complexity is O(N2T)

(Partial obs seq to t AND state i at t) 
  x (transition to j at t+1) x (sensor)

Sum of different ways 
  of getting obs seq

Sum, as can reach j from 
     any preceding state

α incorporates partial obs seq to t



Problem 1: Alternative solution

■ Define auxiliary 
forward variable β:

Central 
problems

Backward algorithm:
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βt(i) – the probability of observing a sequence of 
observables ot+1,…,oT given state qt =i at time t, and λ



Problem 1: Alternative solution
■ Recursive algorithm: 
□ Initialise: 

□Calculate: 

□Terminate:

1)( =jTβ

Central 
problems

Complexity is O(N2T)
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Problem 2: Decoding

■ Choose state sequence to maximise 
probability of observation sequence 

■ Viterbi algorithm - inductive algorithm that 
keeps the best state sequence at each 
instance

Central 
problems



Problem 2: Decoding

■ State sequence to maximise P(O,Q|λ): 

■ Define auxiliary variable δ:

),|,...,( 21 λOqqqP T

Viterbi algorithm:

Central 
problems
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δt(i) – the probability of the most probable 
path ending in state qt=i



Problem 2: Decoding

■ Recurrent property: 

■ Algorithm: 
□1. Initialise:

)())((max)( 11 ++ = tjijtit obaij δδ

Central 
problems
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To get state seq, need to keep track 
of argument to maximise this, for each 
t and j. Done via the array ψt(j).



Problem 2: Decoding
□ 2. Recursion: 

□ 3. Terminate:
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Central 
problems
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P* gives the state-optimised probability

Q* is the optimal state sequence 
(Q* = {q1*,q2*,…,qT*})



Problem 2: Decoding
□ 4. Backtrack state sequence:
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O(N2T) time complexity

Central 
problems



Problem 3: Learning
■ Training HMM to encode obs seq such that HMM 

should identify a similar obs seq in future 
■ Find λ=(A,B,π), maximising P(O|λ) 
■ General algorithm: 
□ Initialise: λ0 
□Compute new model λ, using λ0 and observed sequence 

O 
□Then 
□Repeat steps 2 and 3 until:λλ ←o

Central 
problems

dOPOP <− )|(log)|(log 0λλ



Problem 3: Learning

■ Let ξ(i,j) be a probability of being in state i at time t 
and at state j at time t+1, given λ and O seq
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Central 
problems

∑∑
= =

++

++= N

i

N

j
ttjijt

ttjijt

jobai

jobai

1 1
11

11

)()()(

)()()(

βα

βα

Step 1 of Baum-Welch algorithm: 



Problem 3: Learning
Central 
problems

Operations required for the computation 
of the joint event that the system is in state 
Si and time t and State Sj at time t+1



Problem 3: Learning

■ Let        be a probability of being in state i at 
time t, given O 

■             - expected no. of transitions from state i 

■             - expected no. of transitions 
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problems
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Problem 3: Learning

■              the expected frequency of state i at time t=1 

■                       ratio of expected no. of transitions from 
state i to j over expected no. of transitions from state i 

■                              ratio of expected no. of times in state j 
observing symbol k over expected no. of times in state j
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Central 
problems

Step 2 of Baum-Welch algorithm:
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Problem 3: Learning
■ Baum-Welch algorithm uses the forward and 

backward algorithms to calculate the auxiliary 
variables α,β 

■ B-W algorithm is a special case of the EM 
algorithm: 
□E-step: calculation of ξ and γ 
□M-step: iterative calculation of    ,     , 

■ Practical issues: 
□Can get stuck in local maxima 
□Numerical problems – log and scaling

π̂ ijâ )(ˆ kbj

Central 
problems



STORY OF MLSP 2025

Generative 
Modeling 

Gaussian 

Modeling
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Decision  

Theory
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Discriminative  

Modeling
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Classification
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Deep neural 
architectures



STORY OF MLSP 2025

Deep neural 
architectures

Feed-forward 

Models

Convolutional 

Neural N/w

Learning with  

Regularization
Ensembling 

Attention & 

Transformers

Recurrent  

Neural N/w

Other 

Topics

Graphical 

Models
HMMs



Content Delivery

Implementation

and Understanding

Theory 
and Mathematical 

Foundation 

Intuition and 
Analysis



Course Structure (Rough Schedule)
❖ Introduction to real world data and signals - text, speech, image, video. 

❖ Dimensionality reduction - principal components, linear discriminants. 

❖ Decision theory for pattern recognition, ML and MAP methods, Bias-variance trade-off, model assessment, 
cross-validation, estimating generalization error. 

❖ Generative modeling and density estimation - Gaussian and mixture Gaussian models, kernel density 
estimators, hidden Markov models. Expectation Maximization. 

❖ Linear regression and kernel methods. Regularization methods. 

❖ Discriminative modeling - support vector machines, decision trees and random forest classifiers, bagging 
and boosting. 

❖ Neural networks: gradient descent optimization and back propagation, regularization in neural networks, 
dropout. normalization methods. 

❖ Introduction to deep learning - feedforward, convolutional and recurrent networks, practical considerations 
in deep learning. 

❖ Introduction to transformer models - self and cross attention, encoder and decoder architectures, 
autoregressive decoding.



Dates of Various Rituals
❖ 3 Assignments spread over 3 months (roughly one assignment 

every 3 weeks). 

❖ February second half - Midterm  

❖ February 4th week - project topic and team finalization and 
proposal submission. [1 and 2 person teams]. 

❖ March 3rd week - Project MidTerm Presentations.  

❖ April 3rd week - Final Exam 

❖ April last week - Project Final Presentations 
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