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Transformer encoder
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Pics taken from : https://jalammar.github.io/illustrated-transformer/
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Transformer decoder
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Transformer Example
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Neural Machine Translation Example




Neural Machine Translation Example

English French Translation Quality
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Unsupervised Learning



Unsupervised Learning

Developing models that do not need labels
May model the generation of data.
May allow generation of new data samples
Broad strategies for unsupervised learning

Learning the distribution of the data Detecting clusters in the data

Original unclustered data Clustered data
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Self supervision

4 Different from Supervised Unsupervised Self-Supervised
: Labeled Unlabeled Unlabeled
SuperVISe.d and . Data Set Data Set Data Set
unsupervised learning X,y —— — ic
* Does not perform P
distribution learning .
or reconstruction X, 2

* Uses a pretext task
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* Performing
contrastive or
predictive learning
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4+ Using large volumes of
. Ericsson, Linus, et al. "Self-supervised representation learning: Introduction,
unsupervi Sed d ata advances, and challenges." IEEE Signal Processing Magazine 39.3 (2022): 42-62.




Self supervision - principle

4+ Two levels of modeling with unsupervised data
* Generating a pseudo-label
* Learning the upstream model

+ Downstream task performs fine-tuning of the SSL model.

Setup

Pseudolabel Self-Supervised Downstream
Generation Process Pretraining Task Adaptation
Unlabeled z ¥y
Source Data Set
X

Labeled Update «——— Update (Update) «—— Update

Target Data Set
X,y

Ericsson, Linus, et al. "Self-supervised representation learning: Introduction,
advances, and challenges." IEEE Signal Processing Magazine 39.3 (2022): 42-62. LE AP




Self supervision - pre-text task

Pseudolabel Generation Processes
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Self-supervision as a task

e Masking out portions of the input data

* Pass the rest of the embeddings (with zeros or random entries at the
masked locations) to the transformer encoder

* Have the model predict the word tokens in the masked portions - Masked

Language Modelling (MLM)

* Transformer
Encoder
student of
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Large language models (LLMs)

e Extending the task of self-supervision
® Mine lots of text data
* Crawled from the web, as well as, from other resources.
e Design the model with large capacity (Millions — Billions of parameters)
® Pre-train the model
*With MLM and similar style of losses
* High resource of computations.
e Final trained model can be fine-funed for supervised tasks

* Load the parameters as initialization and perform supervised learning.



Large language models (LLMs)

e Self-supervised learning

* Has shown emergent abilities to generalise to wide variety of downstream
tasks.

v Tasks that the model was not trained on
v Not seen in smaller models
* Enables to build reasoning capabilities in the model.

* Applicable for several domains - text, speech and images.



Self-supervision in audio - wav2vec
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Self-supervision in images - Vision Transformer
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LIM - Examples

e Generative Pre-trained Transformers (GPT) series

Architecture Data Used Model Size

Transformer (12 layer,

decoder only model) Book Corpus (4.5GB) 117M

GPT-1 with additional

. Web Text (40GB) 1.5B
normalisation layers

GPT-2 with more layers
GPT-3/3.5 Adding Fine-tuning tasks Large Web Crawl (570B) 175B
and human feedback

Details Undisclosed
[Trained with Text + Images]

GPT-4/40




Future works (some already underway)

¢ Multi-modal
* Incorporating learning across modalities

v Create a domain specific encoder/decoder and learning the joint language
model.

e Combining some labeled data with the self-supervised data to further
improve the models.

v Current models like GPT use human feedback.

e Understanding the risks and vulnerabilities of these models.



Graphical Models



Graphical Models

e What are graphs
* What are graphical models

e Directed and Undirected graphs

e Conditional independence
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