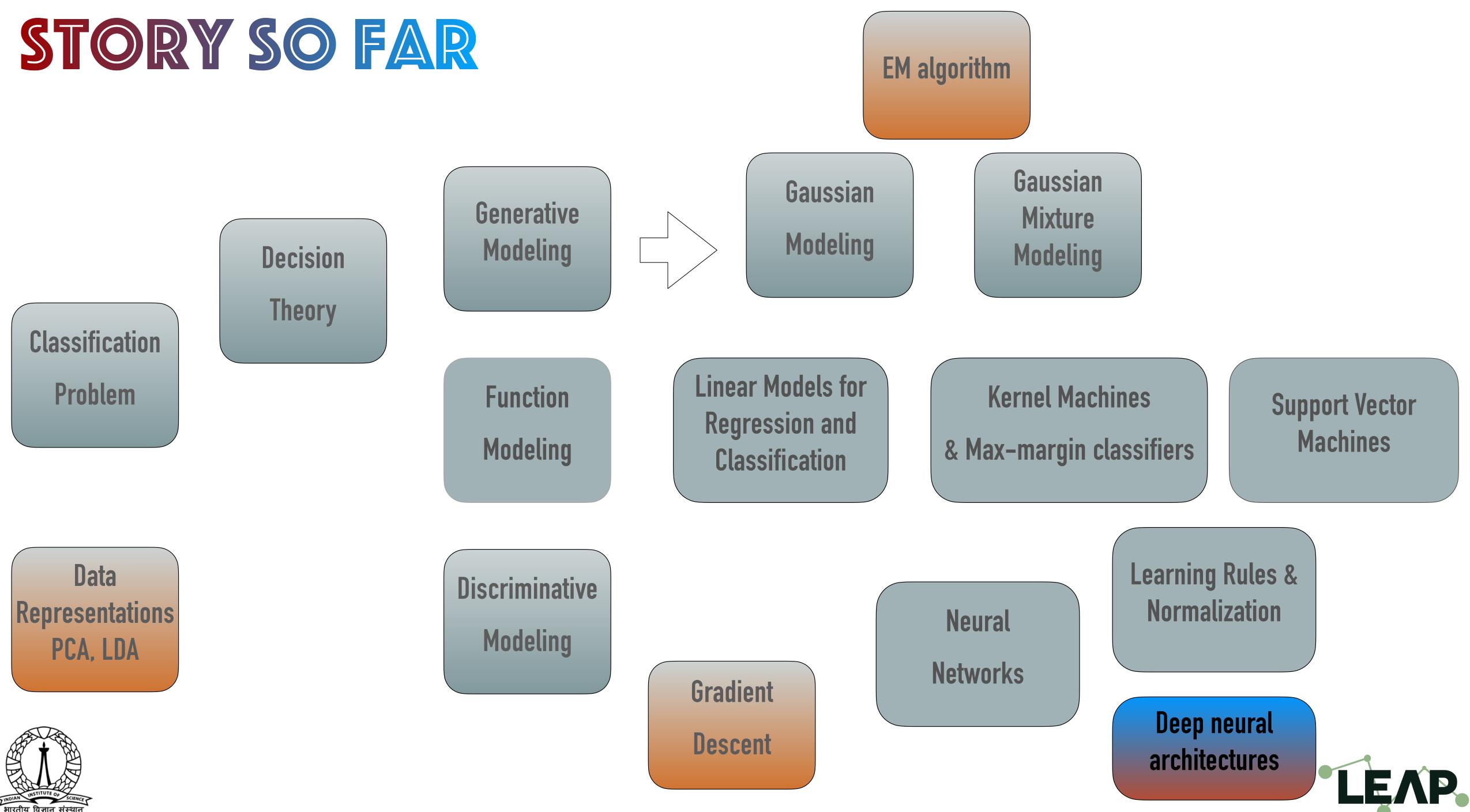
MACHINE LEARNING FOR SIGNAL PROCESSING 24-3-2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/



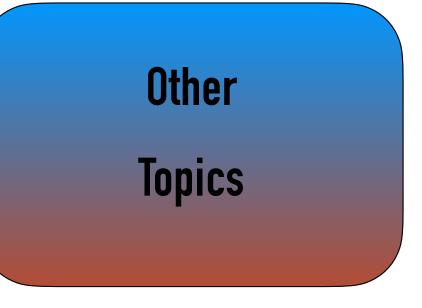
Feed-forward Models

Deep neural architectures Convolutional Neural N/w

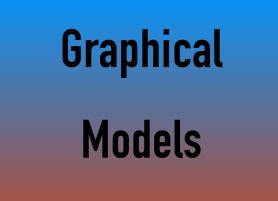
Recurrent

Neural N/w

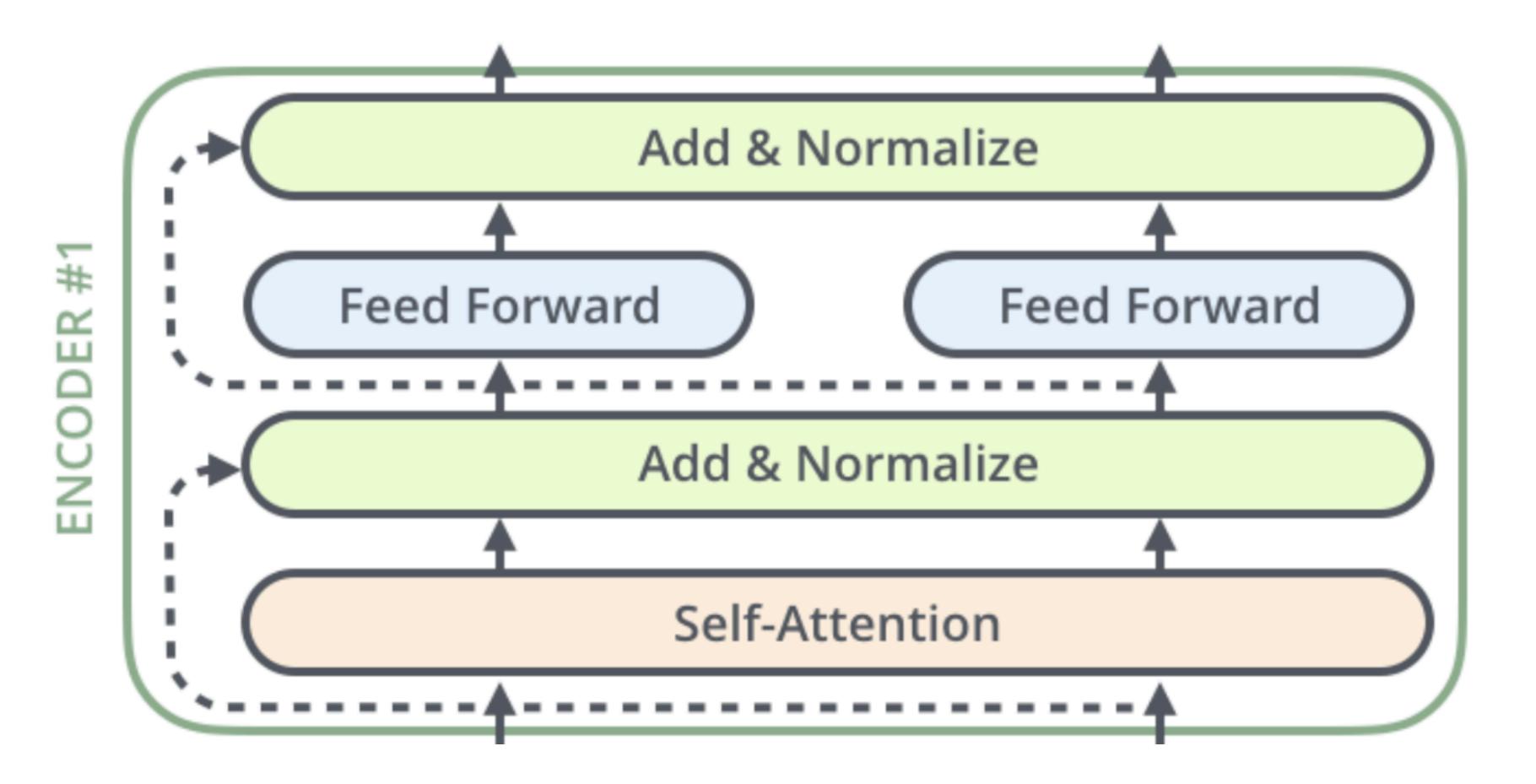
Learning with Regularization



Attention & Transformers



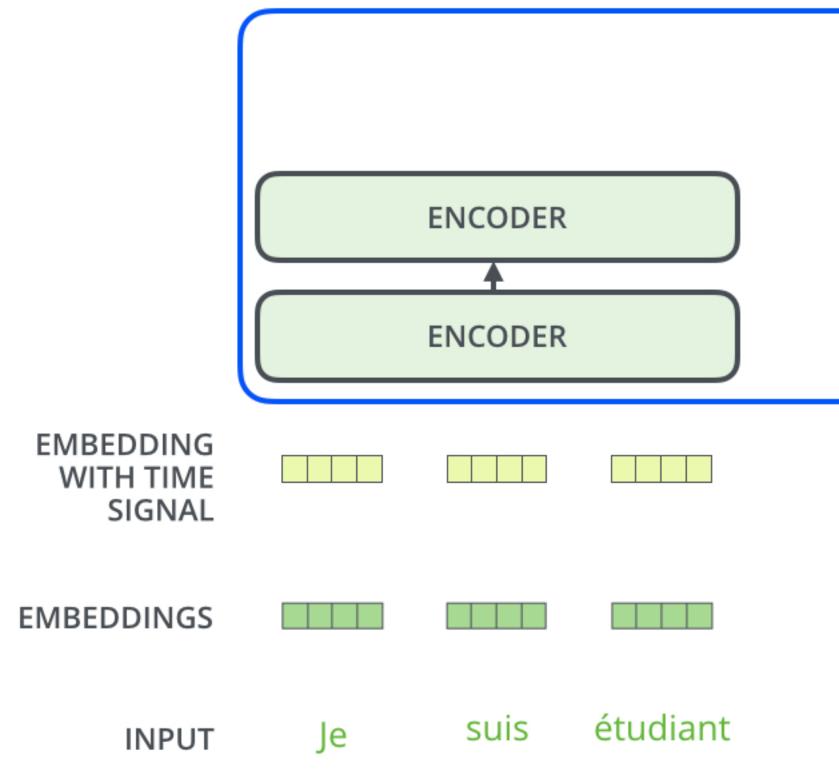
Transformer encoder



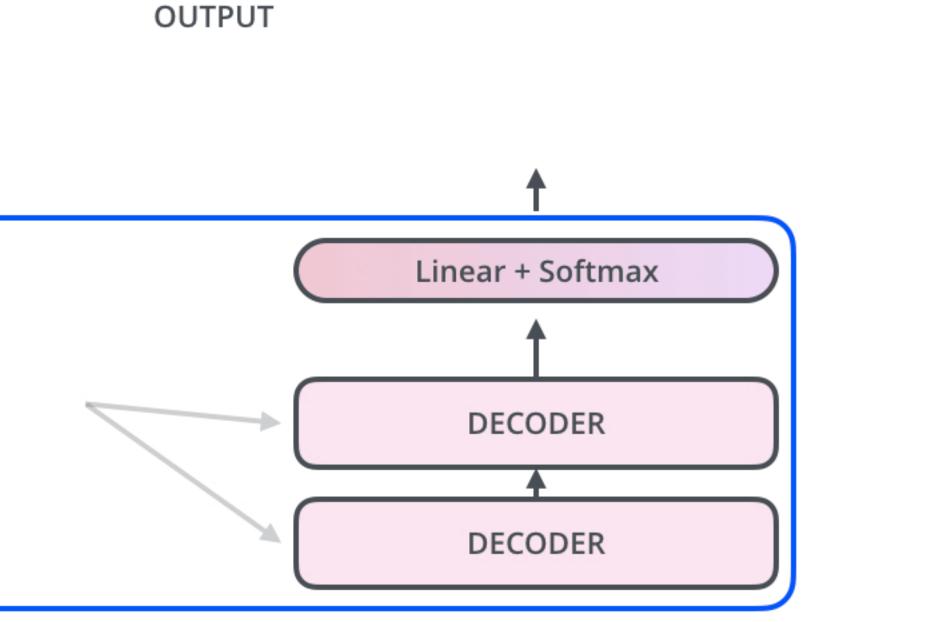
Pics taken from : https://jalammar.github.io/illustrated-transformer/

Transformer

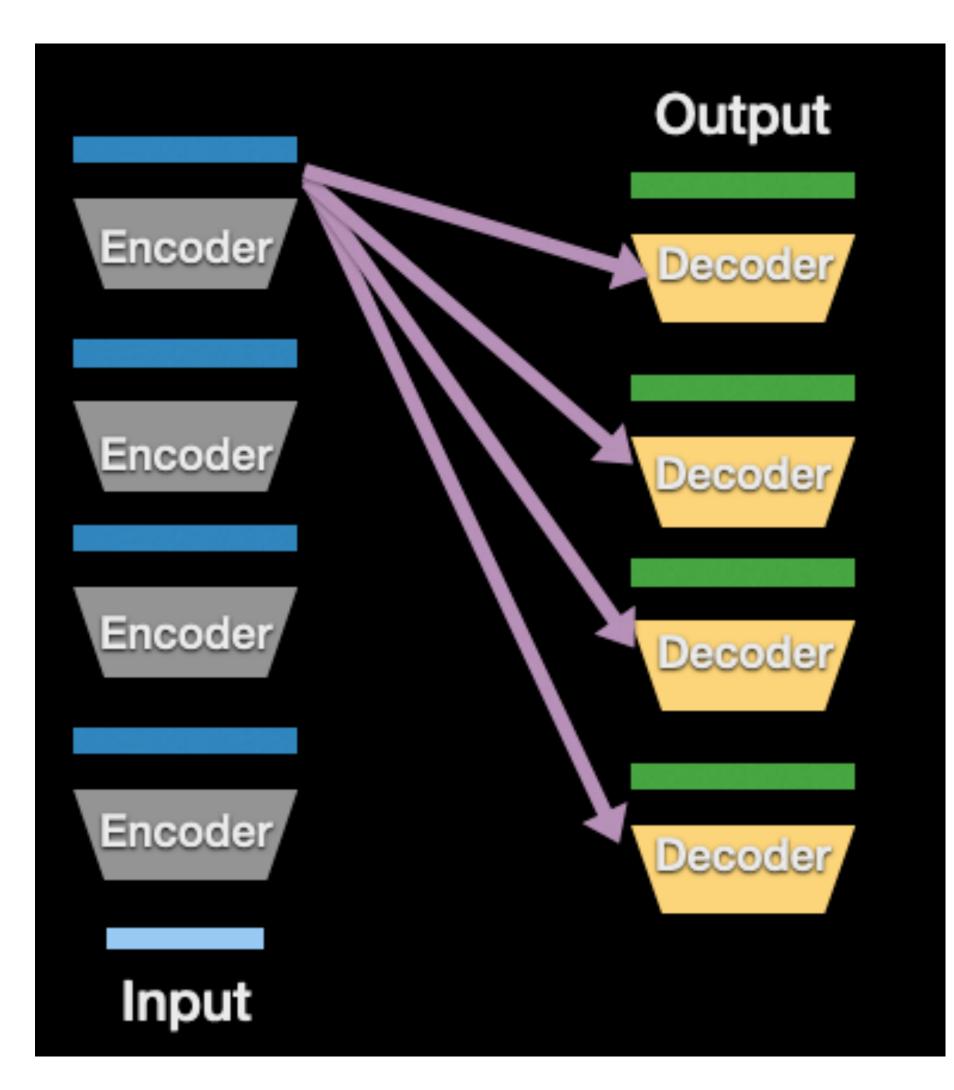
Decoding time step: 1 2 3 4 5 6



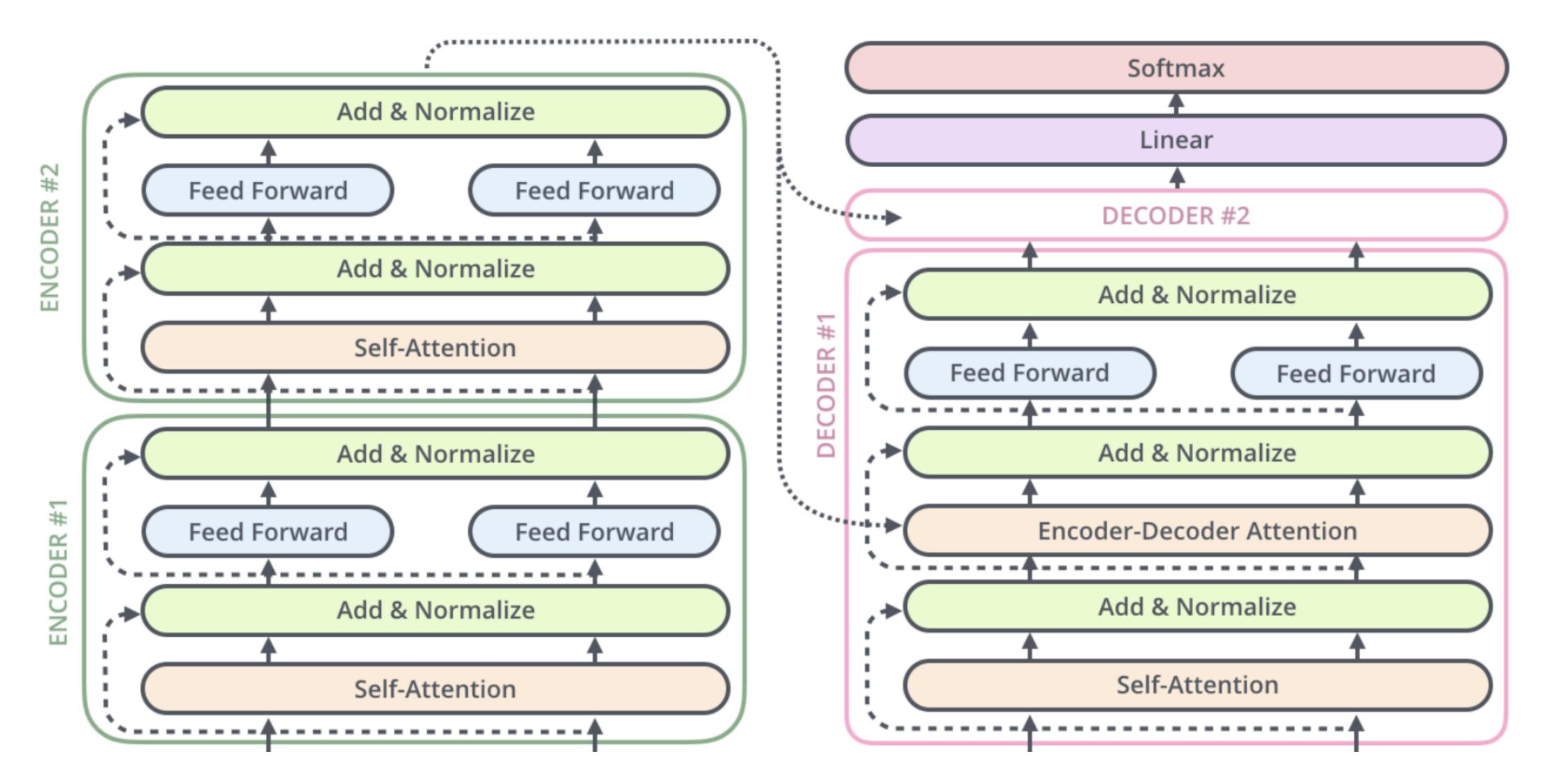
Pics taken from : https://jalammar.github.io/illustrated-transformer/



Encoder-Decoder Attention



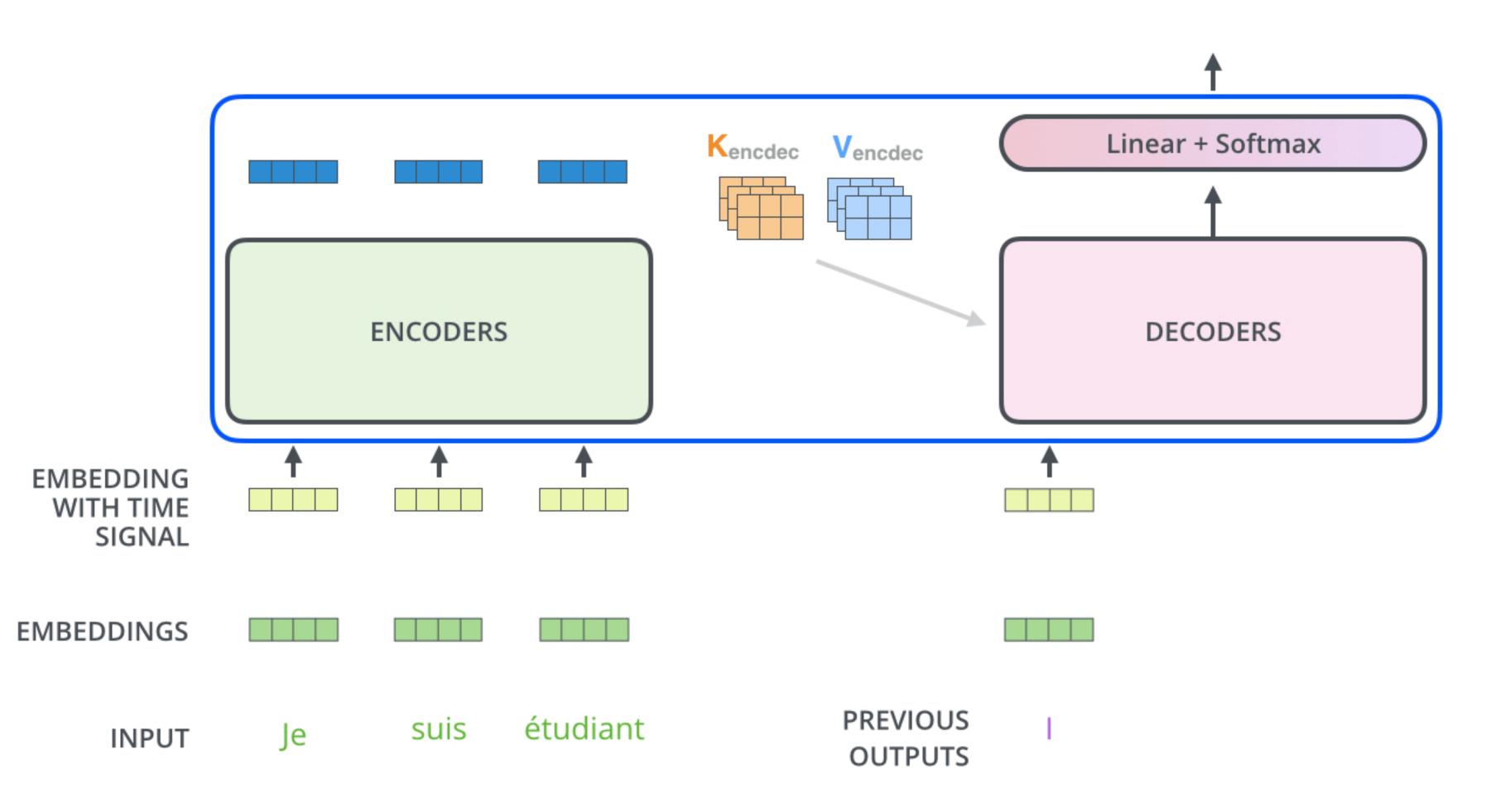
Transformer decoder



Pics taken from : https://jalammar.github.io/illustrated-transformer/

Transformer Example

Decoding time step: 1 2 3 4 5 6



Pics taken from : https://jalammar.github.io/illustrated-transformer/

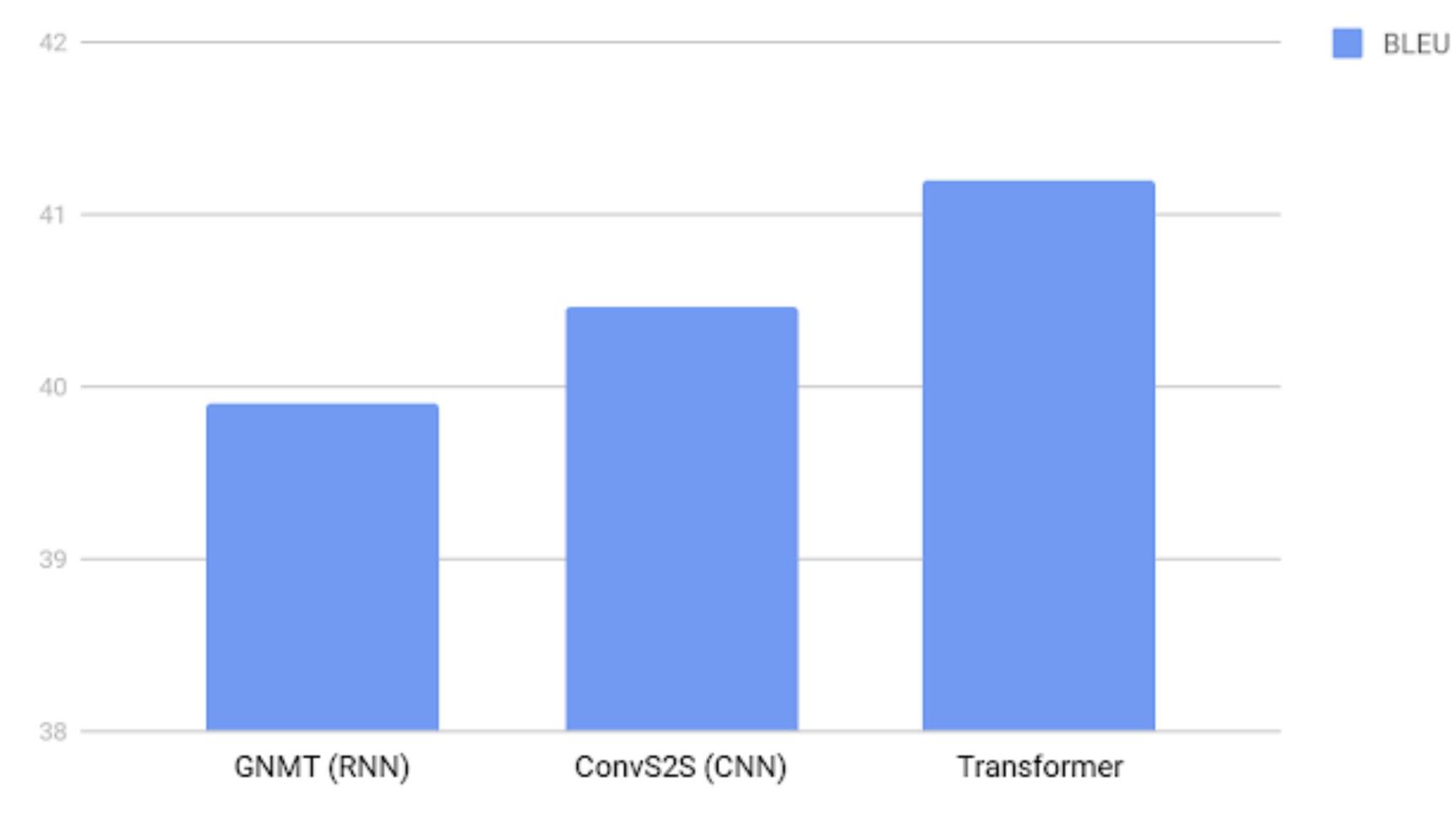
OUTPUT

Neural Machine Translation Example

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Neural Machine Translation Example

English French Translation Quality

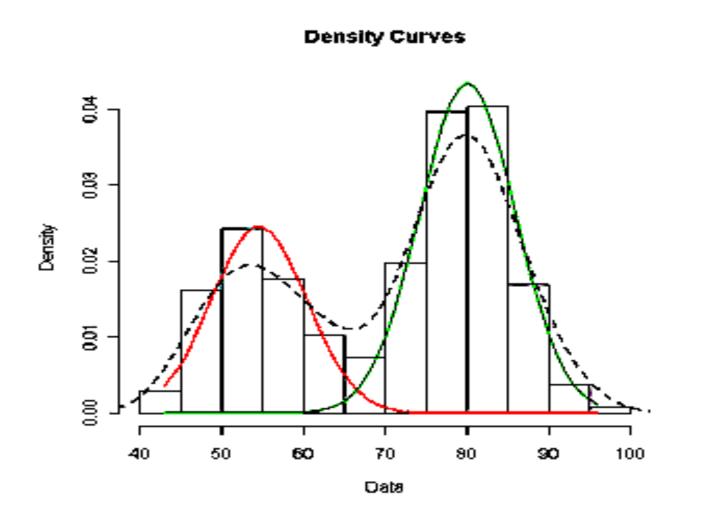


Unsupervised Learning

Unsupervised Learning

- Developing models that do not need labels
 - May model the generation of data.
 - May allow generation of new data samples
- Broad strategies for unsupervised learning

Learning the distribution of the data



t need labels data. data samples ised learning

Detecting clusters in the data



Self supervision

 Different from supervised and unsupervised learning

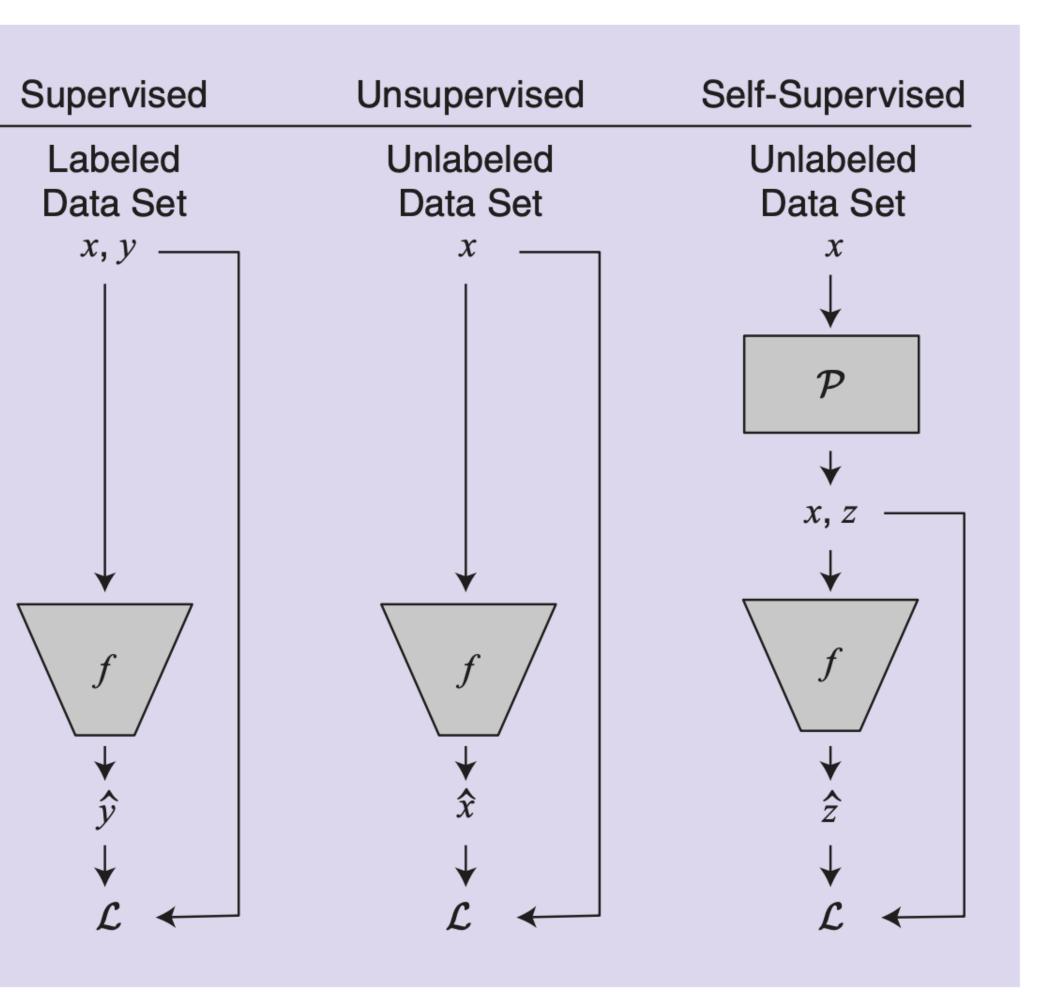
* Does not perform distribution learning or reconstruction

*Uses a pretext task

* Performing contrastive or predictive learning

 Using large volumes of unsupervised data

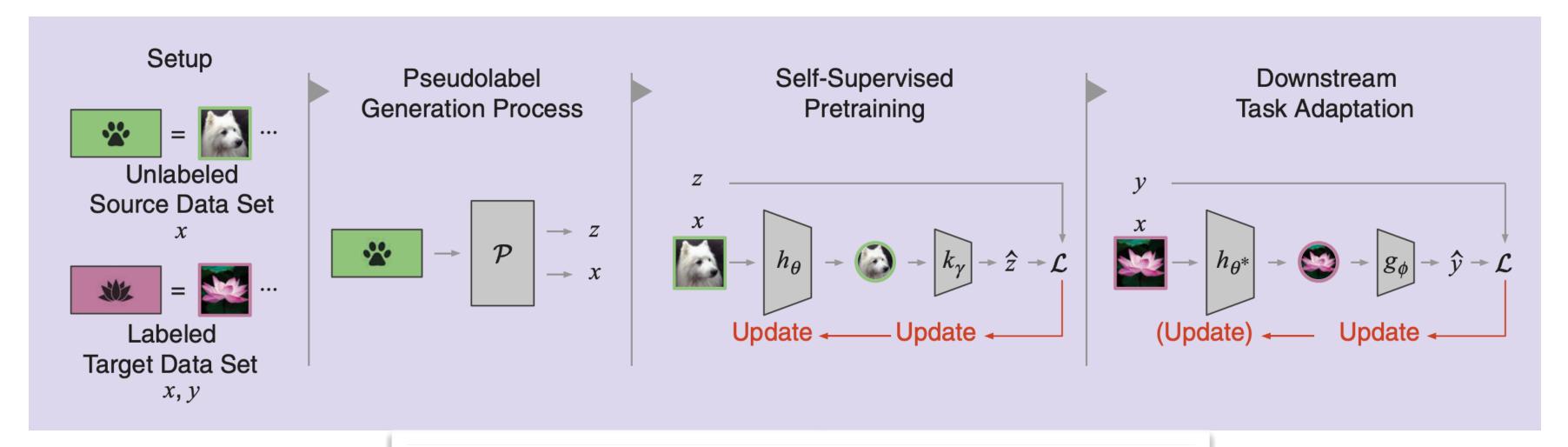
Ericsson, Linus, et al. "Self-supervised representation learning: Introduction, advances, and challenges." *IEEE Signal Processing Magazine* 39.3 (2022): 42-62.



Self supervision - principle

Two levels of modeling with unsupervised data

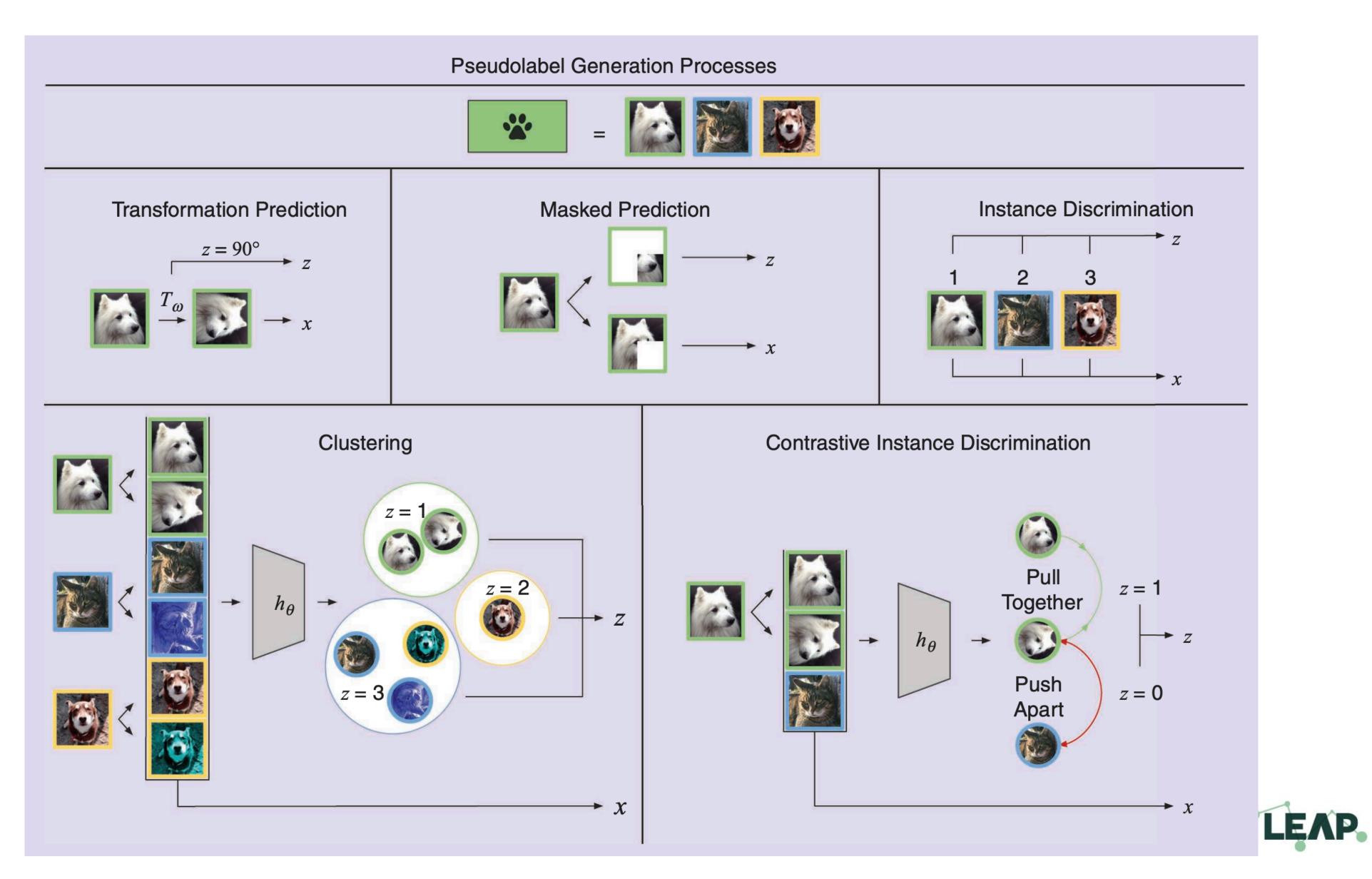
- Generating a pseudo-label
- Learning the upstream model



Ericsson, Linus, et al. "Self-supervised representation learning: Introduction, advances, and challenges." IEEE Signal Processing Magazine 39.3 (2022): 42-62.

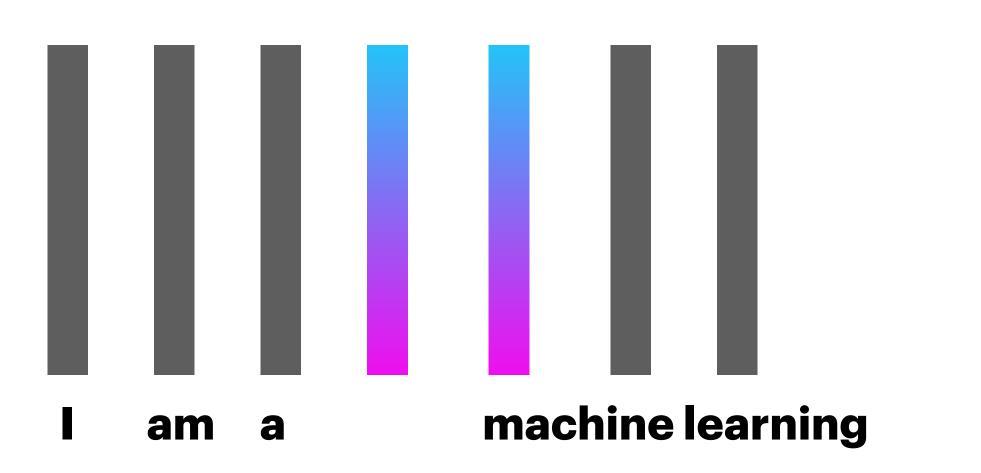
Downstream task performs fine-tuning of the SSL model.

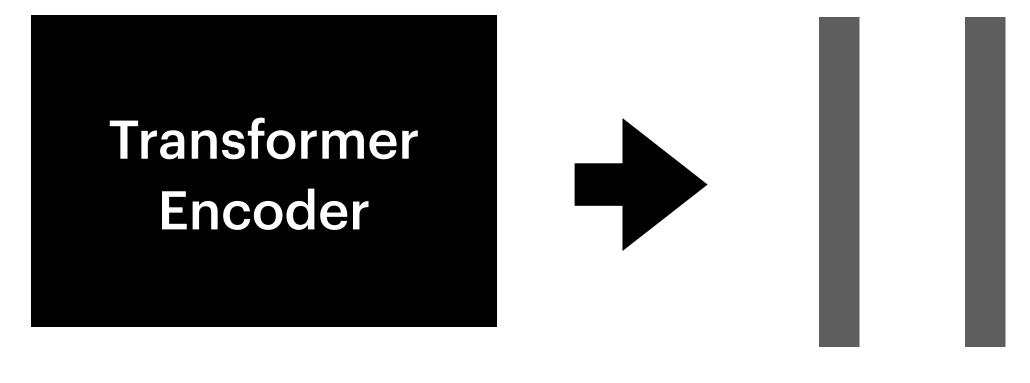
Self supervision - pre-text task



Self-supervision as a task

- Masking out portions of the input data
 - * Pass the rest of the embeddings (with zeros or random entries at the masked locations) to the transformer encoder
 - *Have the model predict the word tokens in the masked portions Masked Language Modelling (MLM)





Large language models (LLMs)

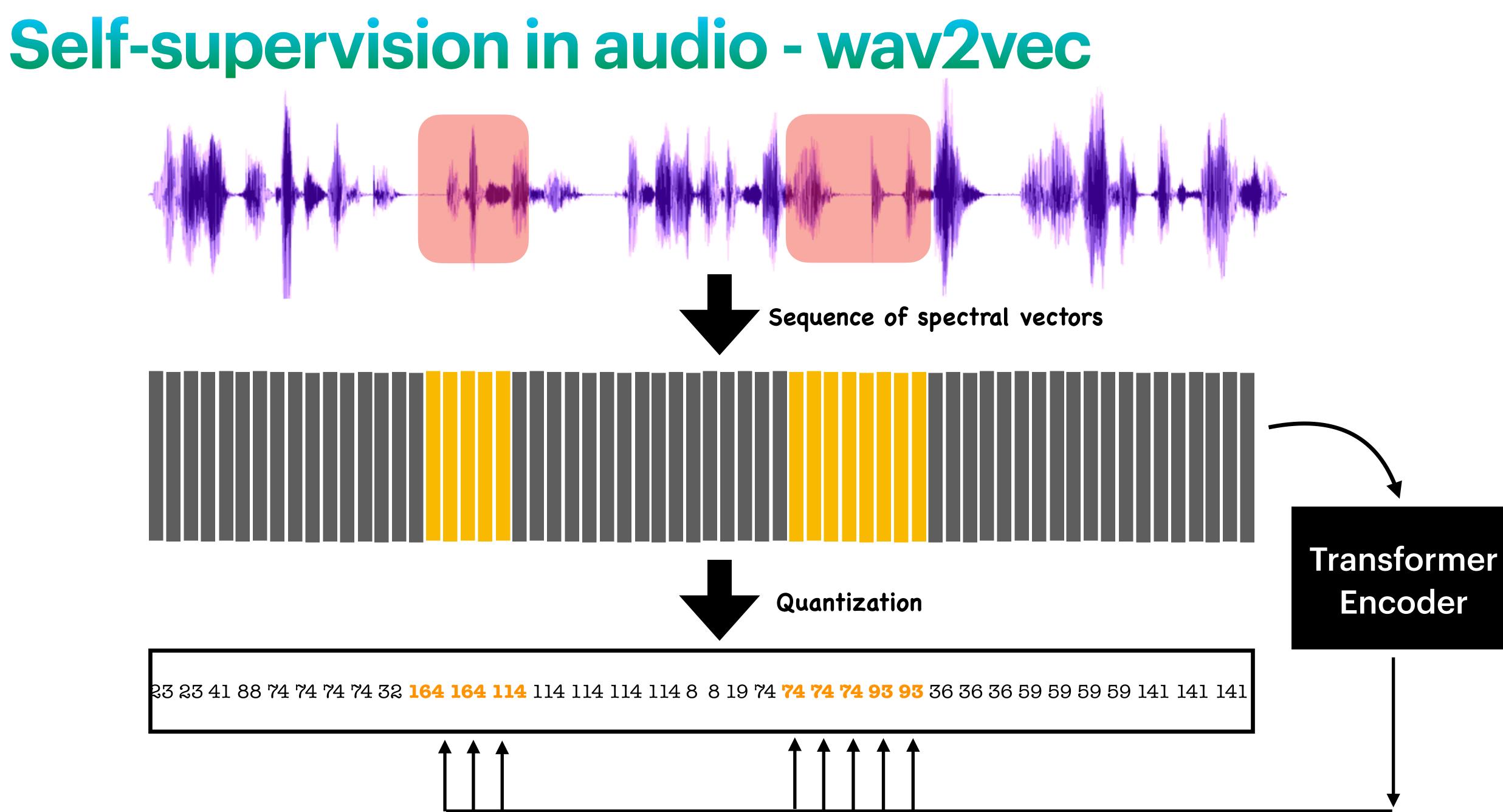
- Extending the task of self-supervision
- Mine lots of text data * Crawled from the web, as well as, from other resources.
- Design the model with large capacity (Millions -> Billions of parameters)
- Pre-train the model
 - *With MLM and similar style of losses

*High resource of computations.

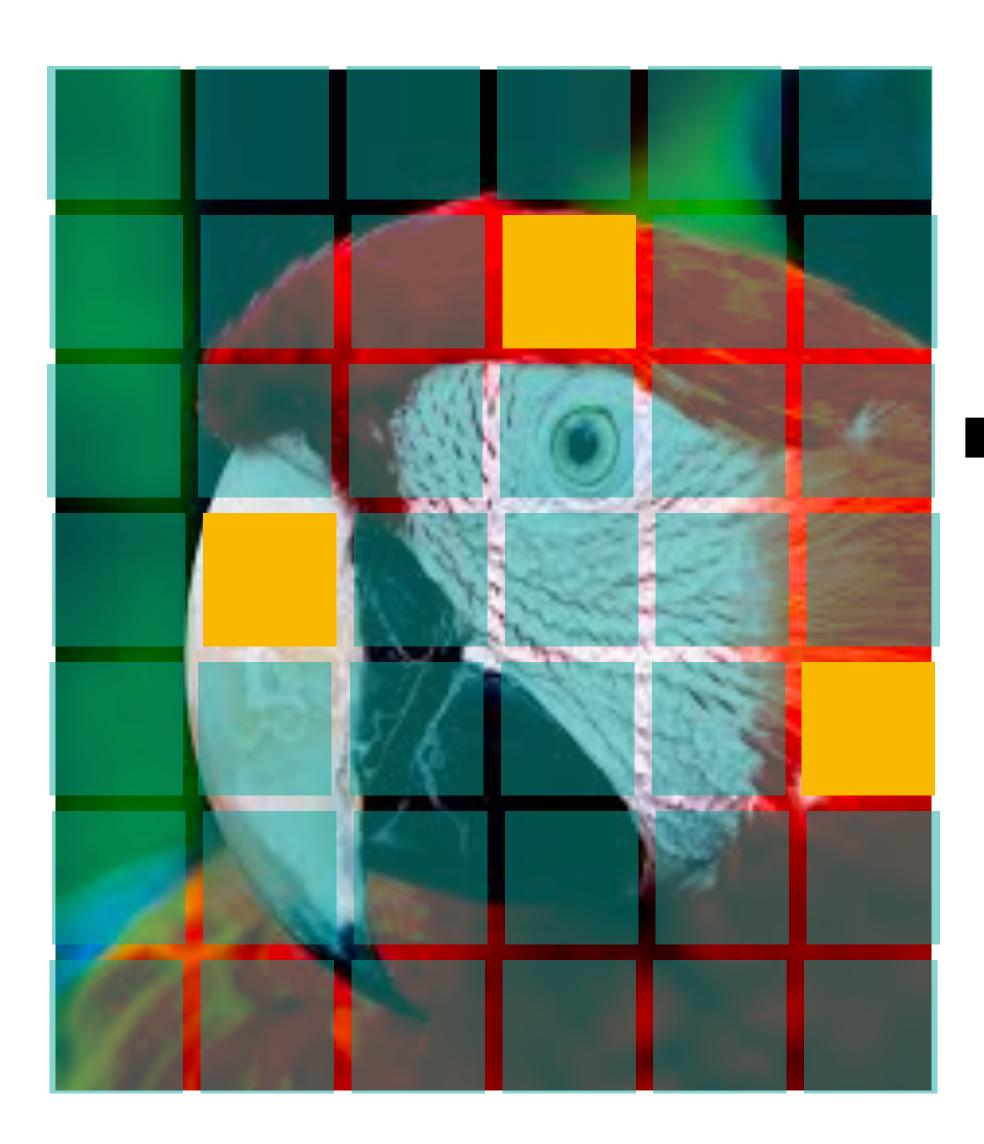
 Final trained model can be fine-tuned for supervised tasks *Load the parameters as initialization and perform supervised learning.

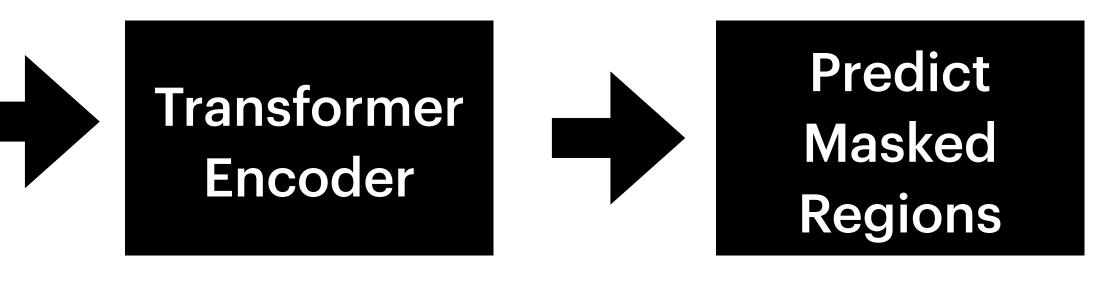
Large language models (LLMs)

- Self-supervised learning
 - * Has shown emergent abilities to generalise to wide variety of downstream tasks.
 - ✓ Tasks that the model was not trained on
 - ✓ Not seen in smaller models
 - *Enables to build reasoning capabilities in the model.
 - * Applicable for several domains text, speech and images.



Self-supervision in images - Vision Transformer





LLM-Examples

• Generative Pre-trained Transformers (GPT) series

	Architecture	Data Used	Model Size
GPT-1	Transformer (12 layer, decoder only model)	Book Corpus (4.5GB)	117M
GPT-2	GPT-1 with additional normalisation layers	Web Text (40GB)	1.5B
GPT-3/3.5	GPT-2 with more layers Adding Fine-tuning tasks and human feedback	Large Web Crawl (570B)	175B
GPT-4/40	Details Undisclosed [Trained with Text + Images]		

Future works (some already underway)

- Multi-modal
 - *Incorporating learning across modalities
 - I Create a domain specific encoder/decoder and learning the joint language model.
- Combining some labeled data with the self-supervised data to further improve the models.
 - ✓ Current models like GPT use human feedback.
- Understanding the risks and vulnerabilities of these models.

Graphical Models

Graphical Models

- What are graphs
 *What are graphical models
- Directed and Undirected graphs

Conditional independence

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

