MACHINE LEARNING FOR SIGNAL PROCESSING

24-3-2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R.

LEAP lab, Electrical Engineering, Indian Institute of Science

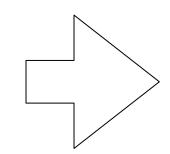
.....

STORY SO FAR

EM algorithm

Decision
Theory

Generative Modeling



Gaussian Modeling

Gaussian
Mixture
Modeling

Classification Problem

Function Modeling Linear Models for Regression and Classification

Kernel Machines

& Max-margin classifiers

Support Vector Machines

Data
Representations
PCA, LDA

INDIAN INSTITUTE OF SCIENCE
भारतीय विज्ञान संस्थान

Discriminative Modeling

Gradient Descent

Neural Networks Learning Rules & Normalization

Deep neural architectures

STORY SO FAR

Feed-forward

Models

Learning with

Regularization

Ensembling

Deep neural architectures

Convolutional

Neural N/w

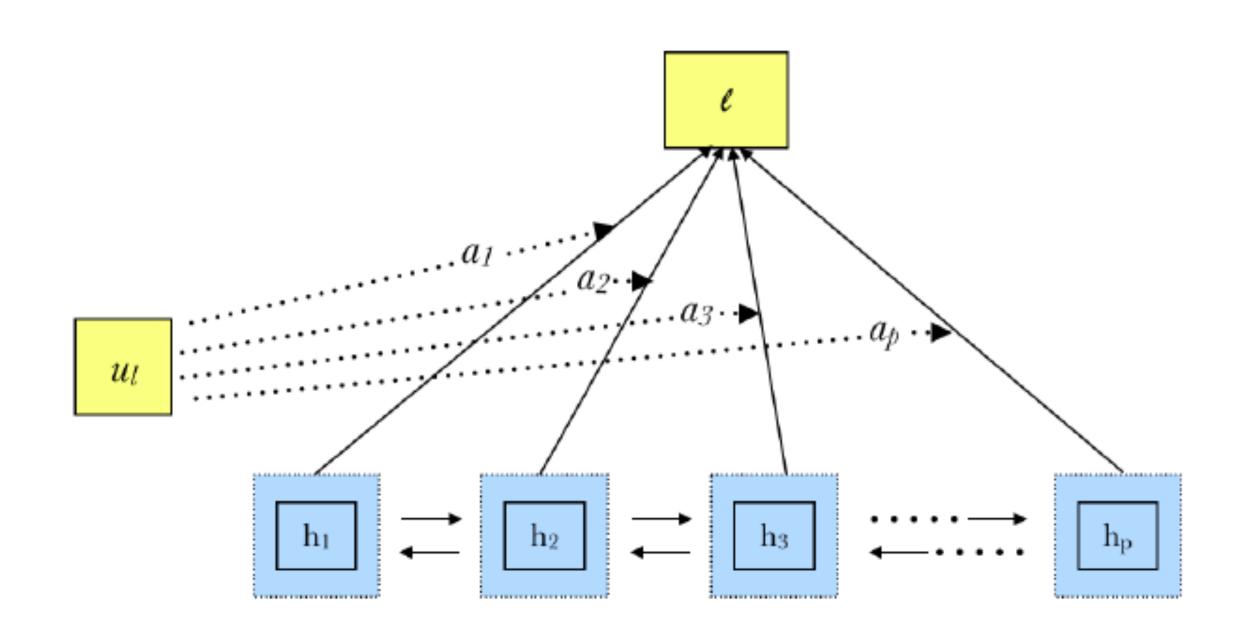
Recurrent

Neural N/w

Attention &

Transformers

Attention in LSTM Networks



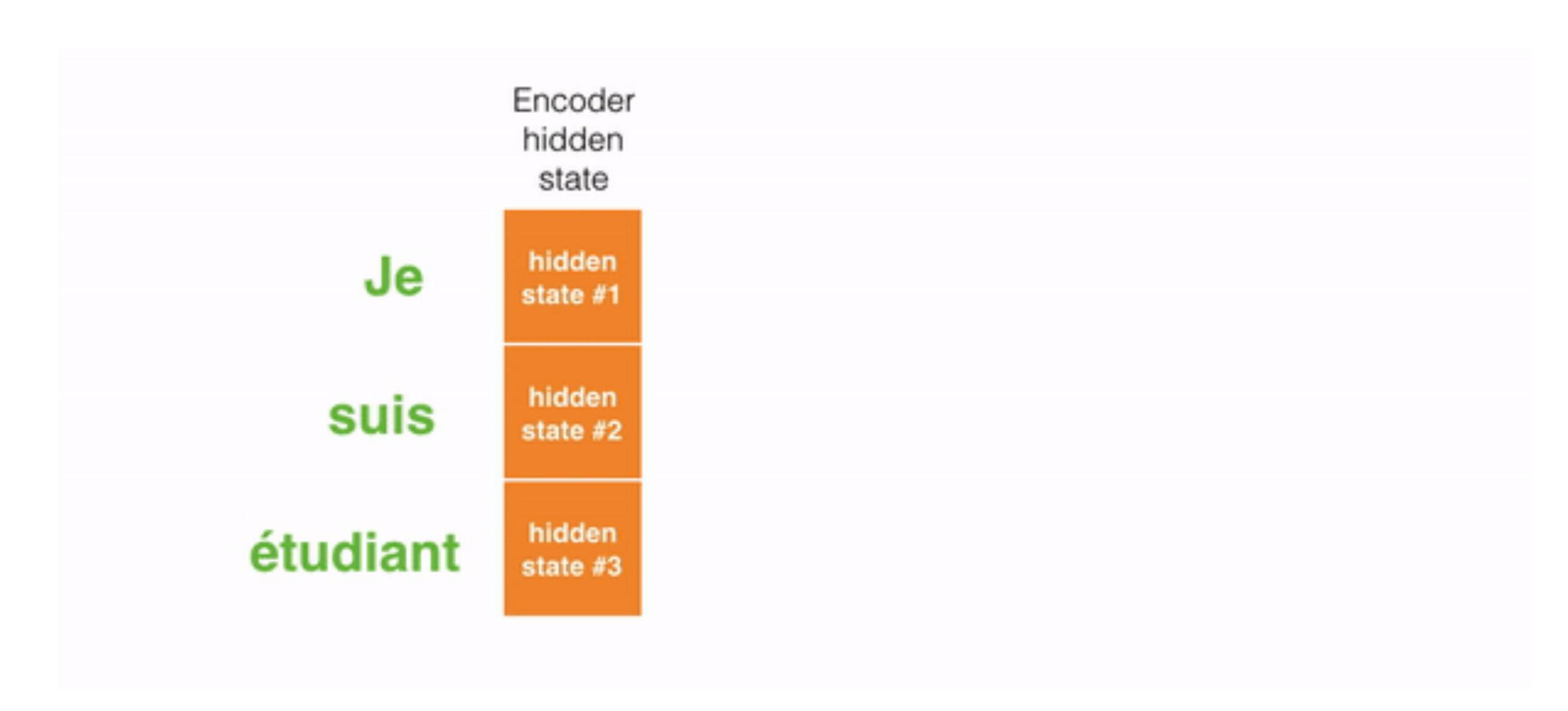
$$\mathbf{u}_{t} = tanh(\mathbf{W}_{l}\mathbf{h}_{t} + \mathbf{b}_{l})$$

$$a_{t} = \frac{exp(\mathbf{u}_{t}^{T}\mathbf{u}_{l})}{\sum_{t} exp(\mathbf{u}_{t}^{T}\mathbf{u}_{l})}$$

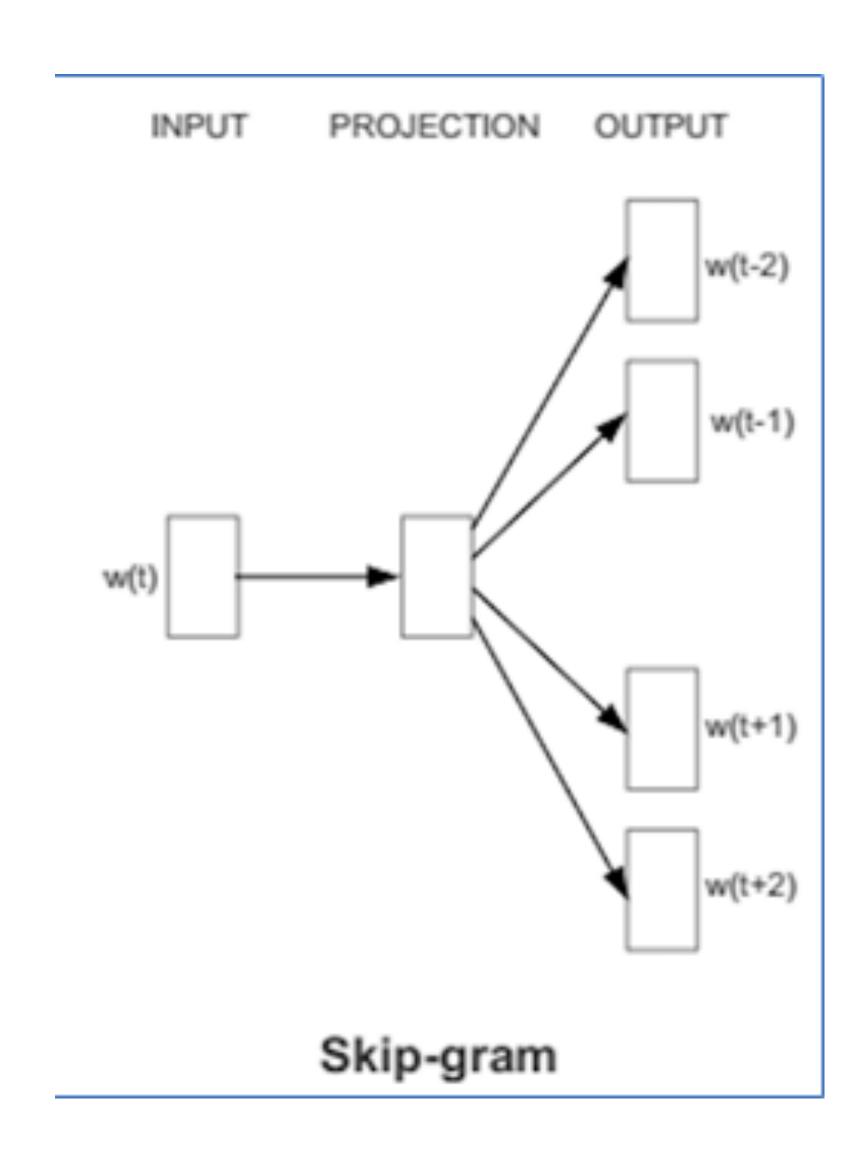
$$l = \sum_{t} a_{t}\mathbf{h}_{t}$$

- * Attentions allows a mechanism to add relevance
 - * Certain regions of the audio have more importance than the rest for the task at hand.

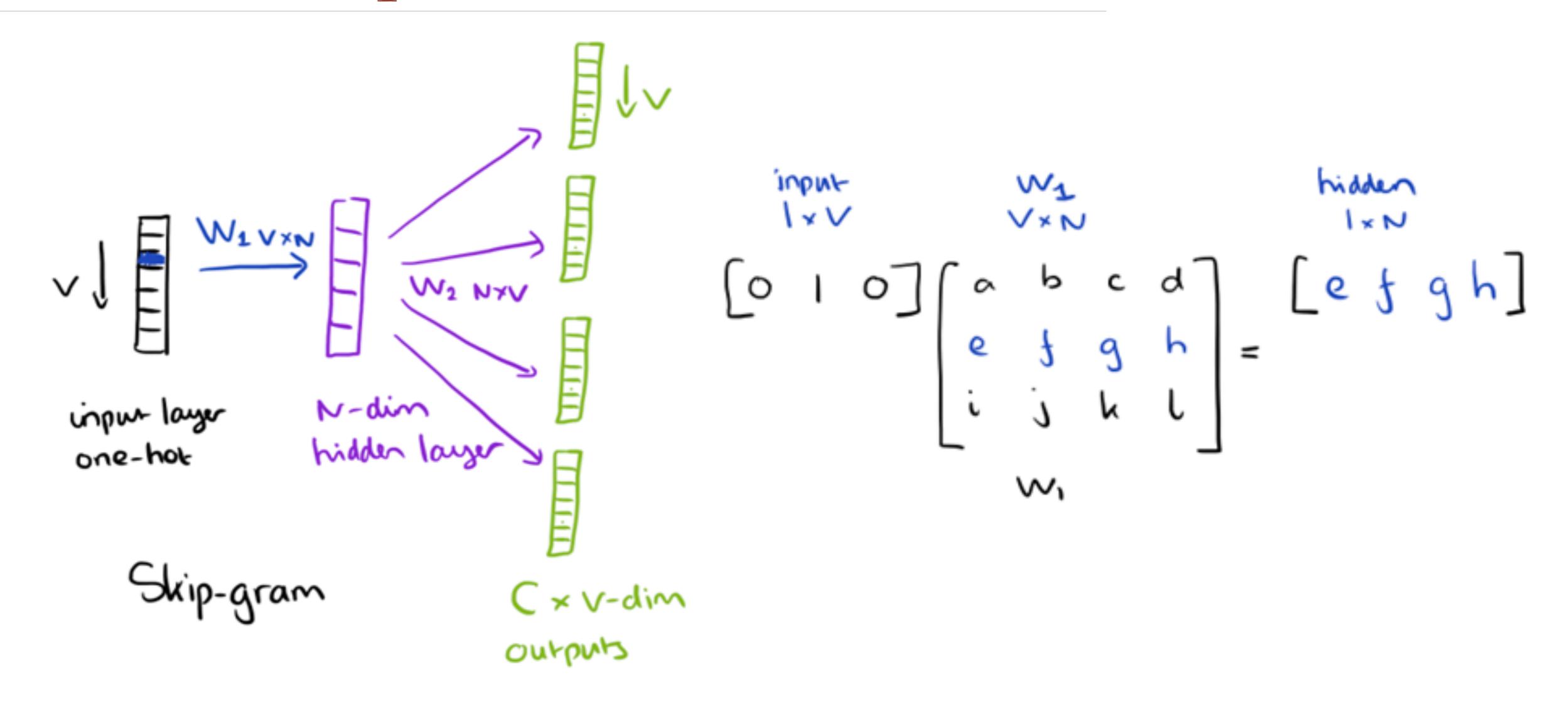
Encoder-Decoder Attention



word2vec models as text representations

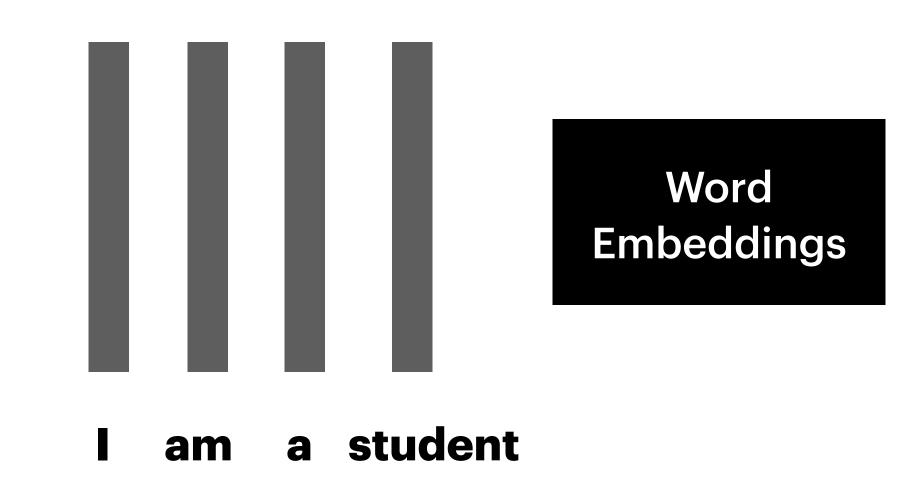


word2vec representations

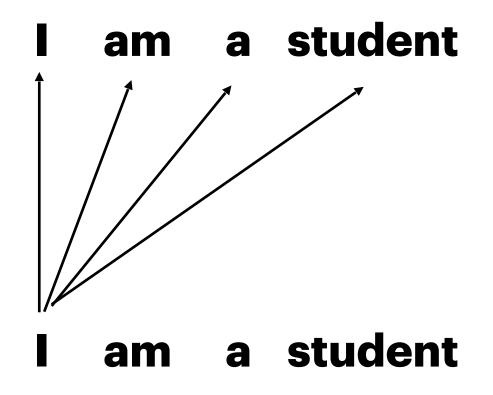


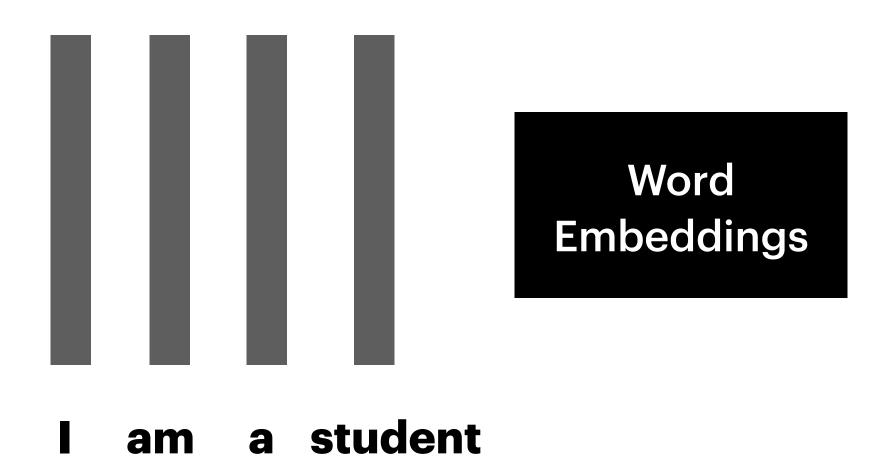
Transformers

• Embedding context in sequence inputs

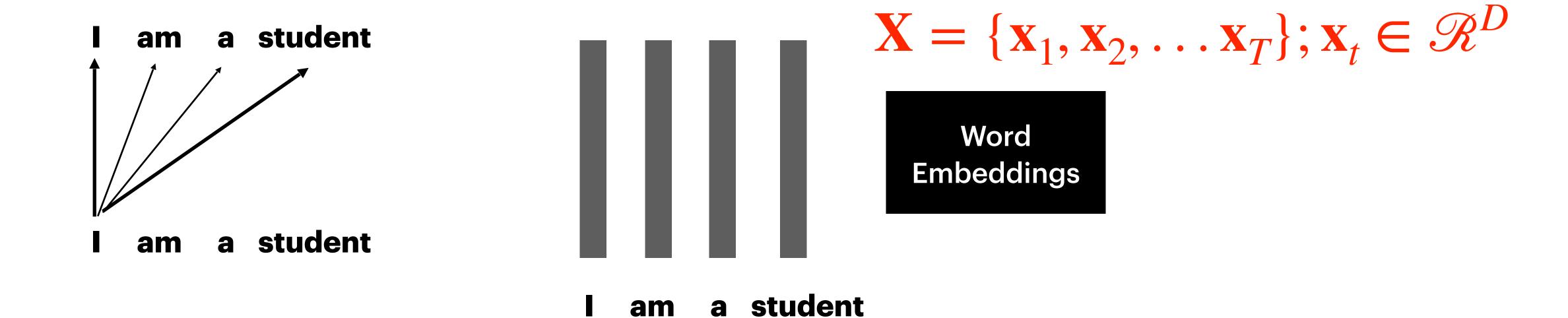


- Embedding context in sequence inputs
 - *Let us take an example

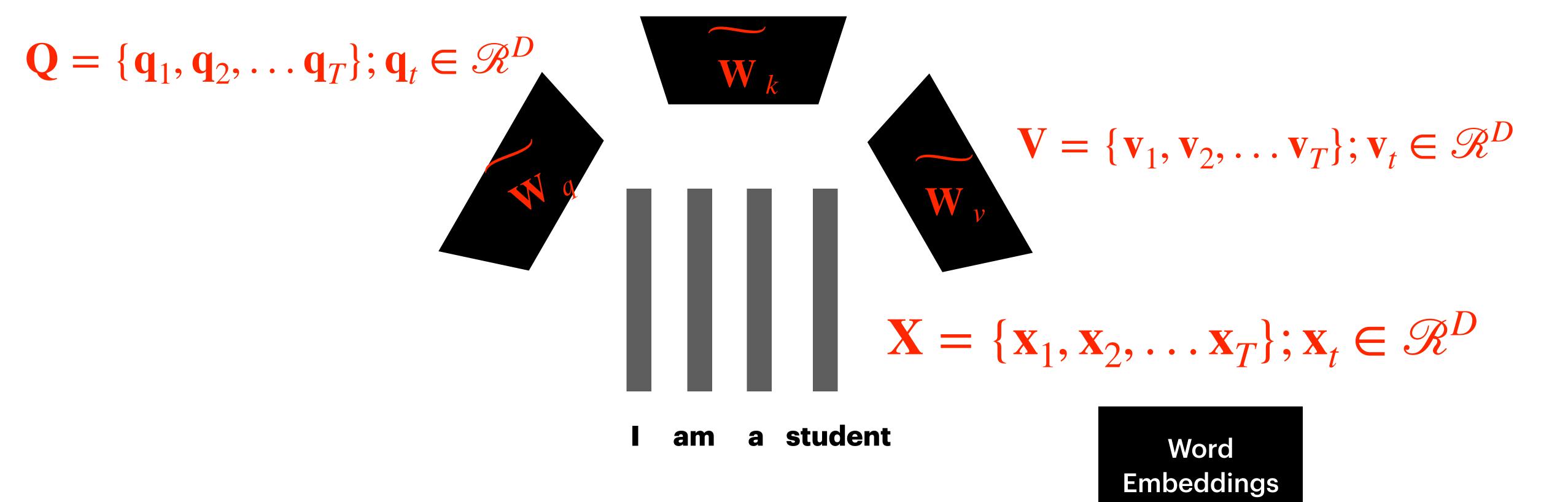


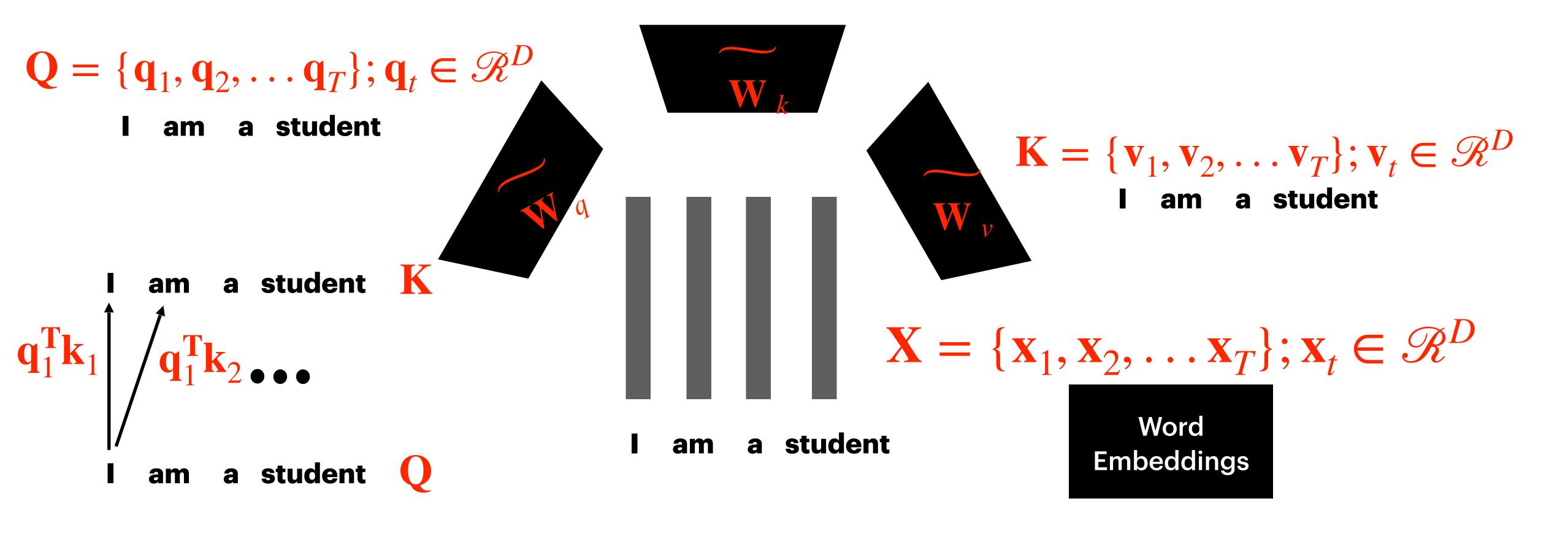


- Embedding context in sequence inputs
 - *Let us take an example
 - *Using word embeddings as the input representation



$$\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots \mathbf{k}_T\}; \mathbf{k}_t \in \mathcal{R}^D$$



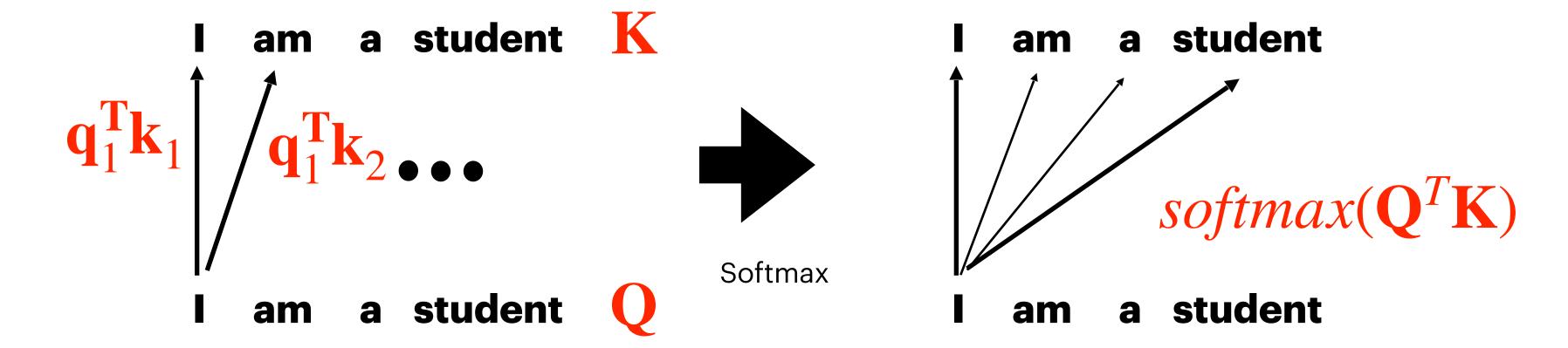


I am a student
$$\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots \mathbf{k}_T\}; \mathbf{k}_t \in \mathcal{R}^D$$

I am a student

$$\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_T\}; \mathbf{q}_t \in \mathcal{R}^D$$

$$\mathbf{K} = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_T\}; \mathbf{v}_t \in \mathcal{R}^D$$
I am a student

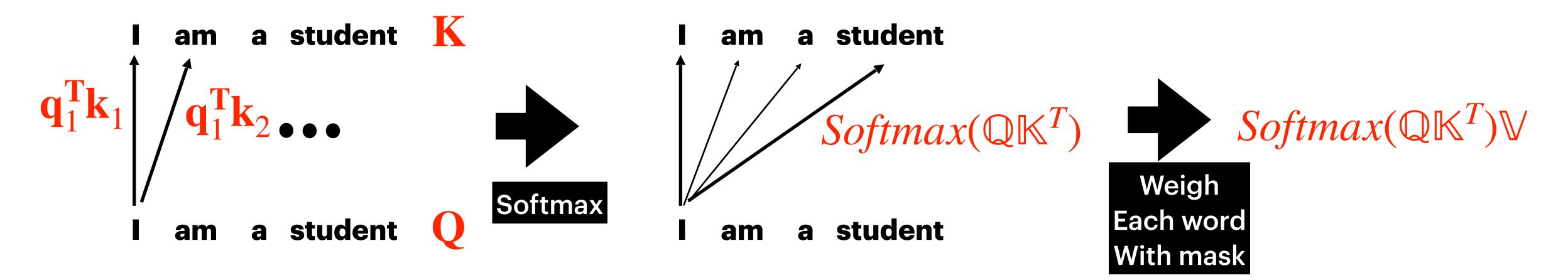


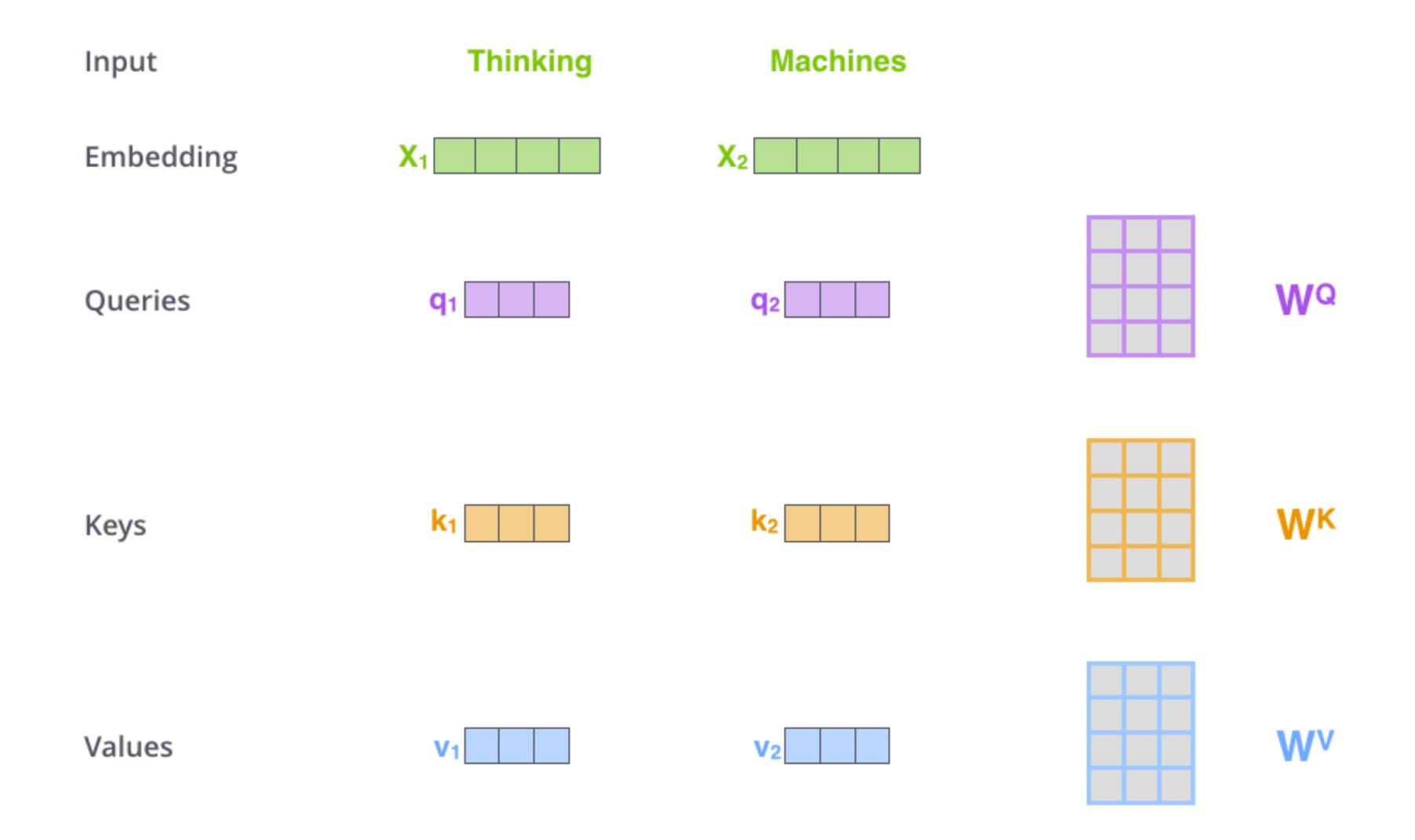
I am a student
$$\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots \mathbf{k}_T\}; \mathbf{k}_t \in \mathcal{R}^D$$

I am a student

$$\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_T\}; \mathbf{q}_t \in \mathcal{R}^D$$

$$\mathbf{K} = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_T\}; \mathbf{v}_t \in \mathscr{R}^D$$
I am a student





Input

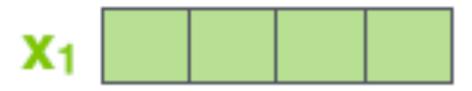
Embedding

Queries

Keys

Values

Score



q₁

k₁

V₁

 $q_1 \cdot k_1 = 112$

Machines

X₂

q₂

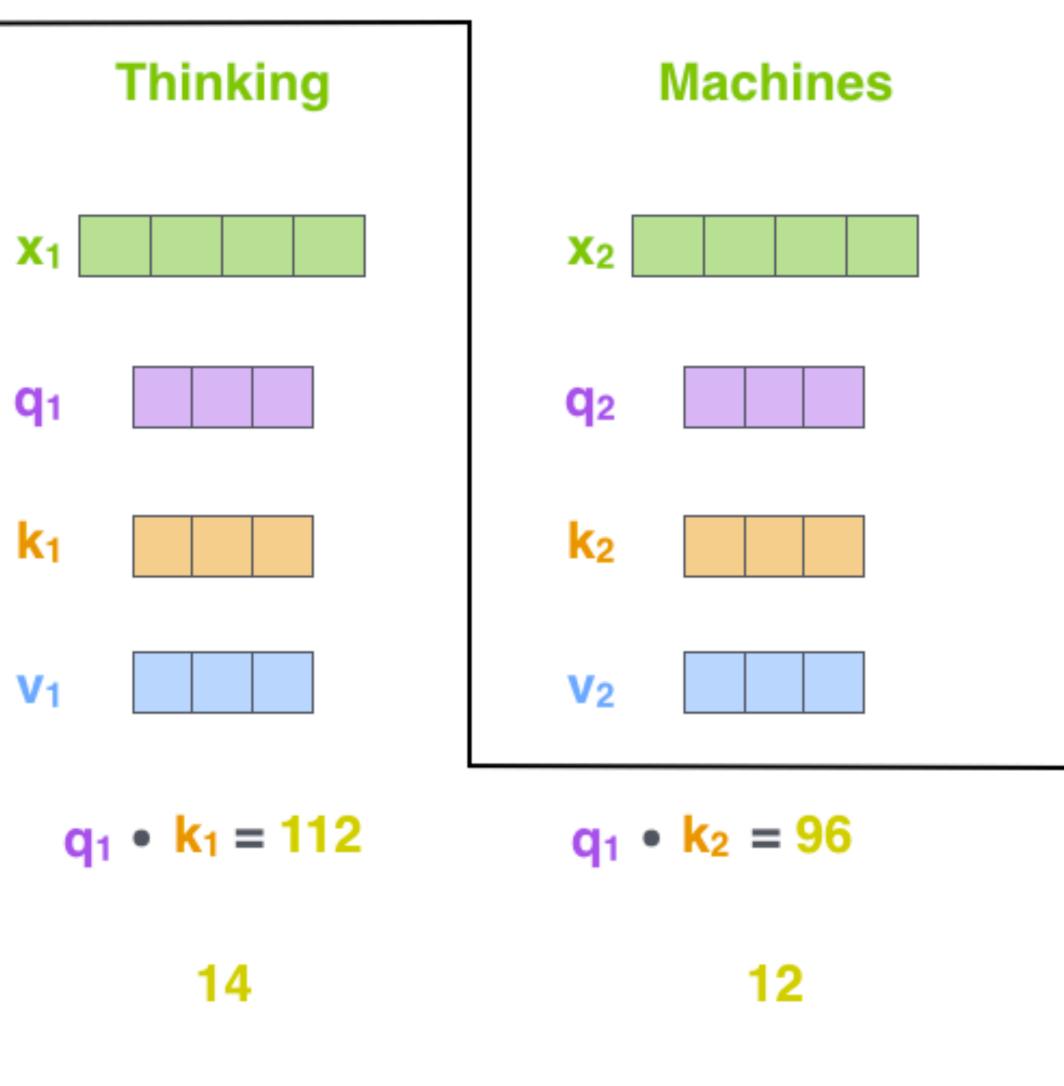
K₂

V₂

 $q_1 \cdot k_2 = 96$

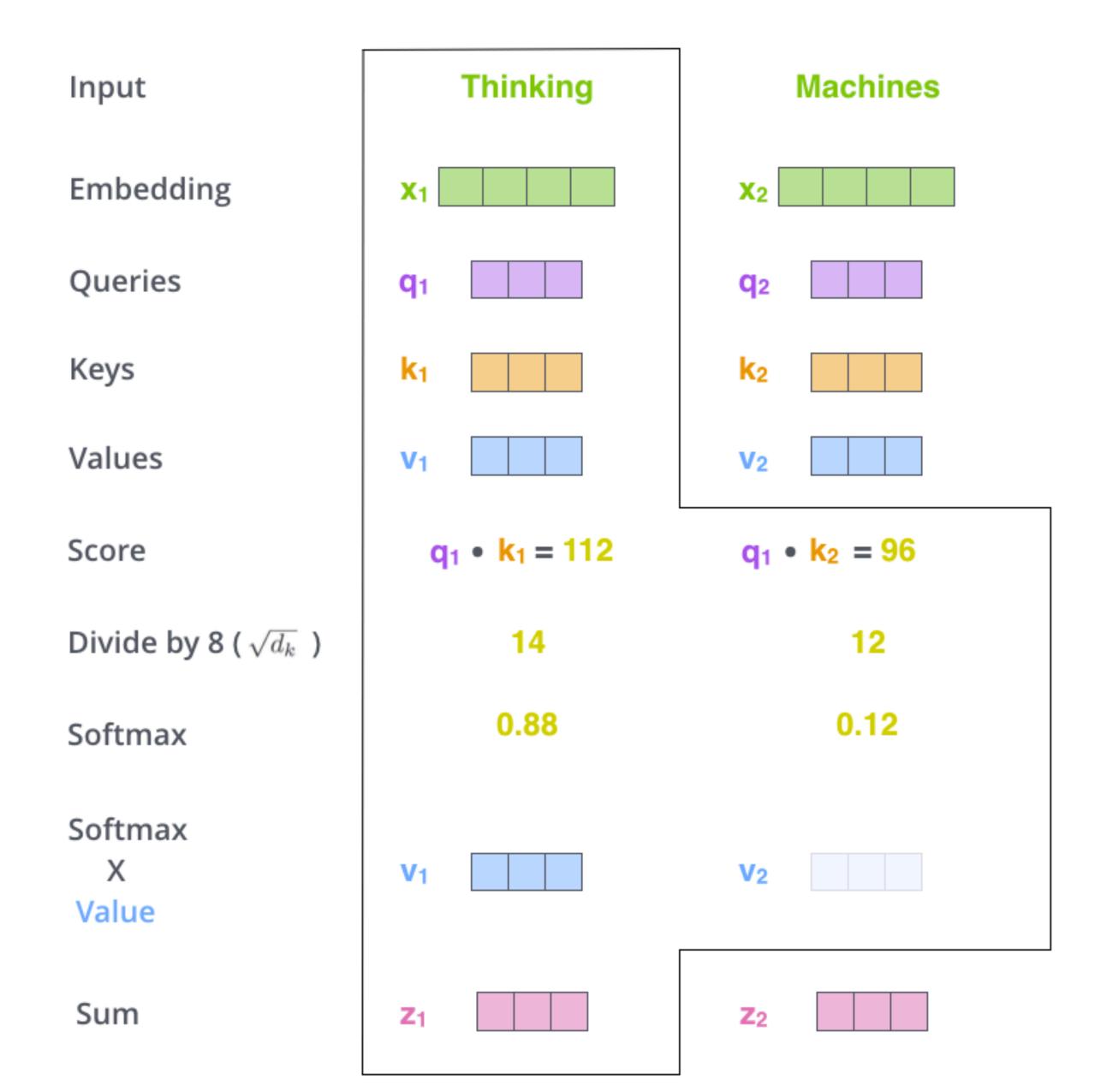
Softmax

Input **Embedding** Queries q_1 Keys \mathbf{k}_1 **Values** V_1 Score Divide by 8 ($\sqrt{d_k}$)

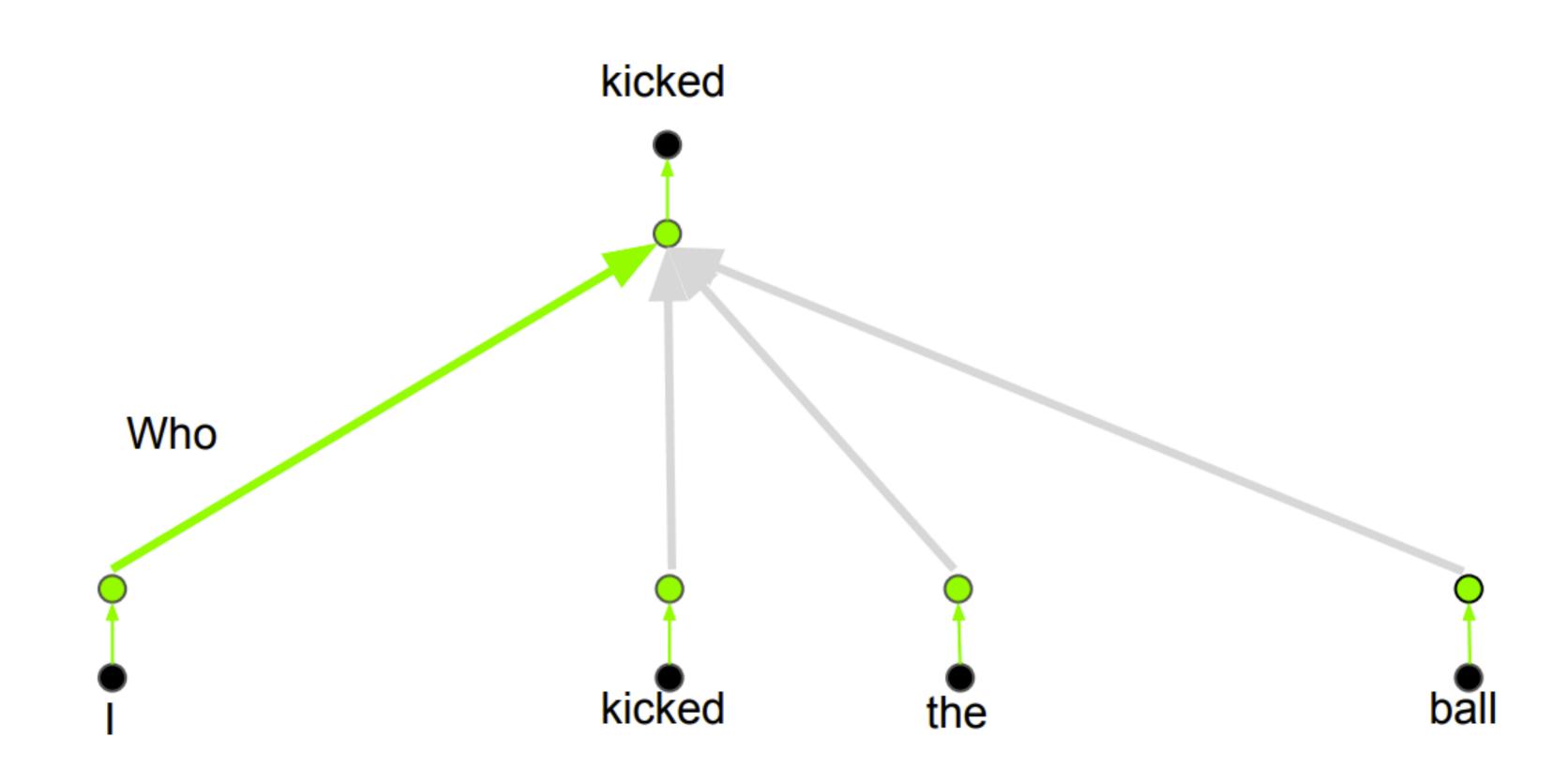


0.12

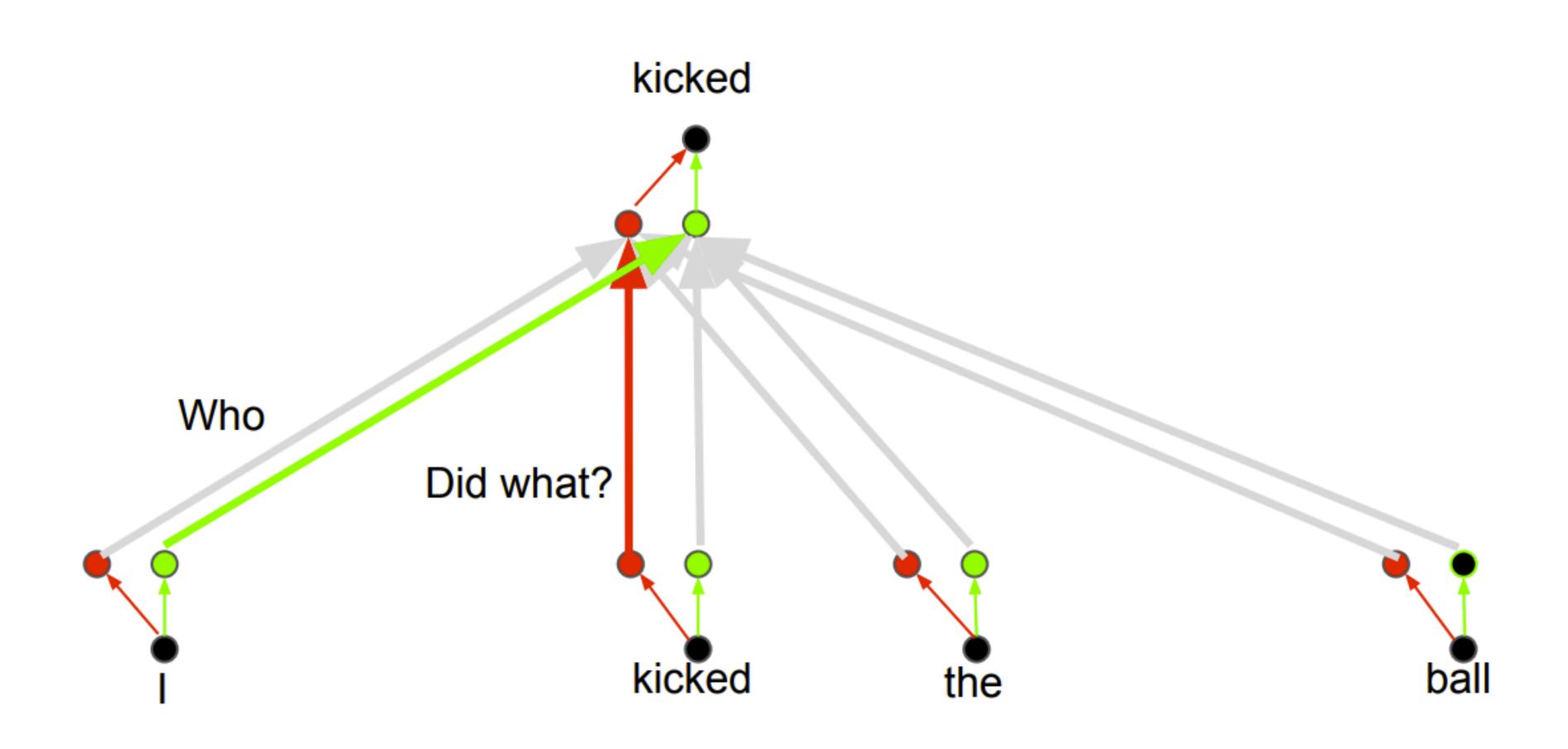
0.88



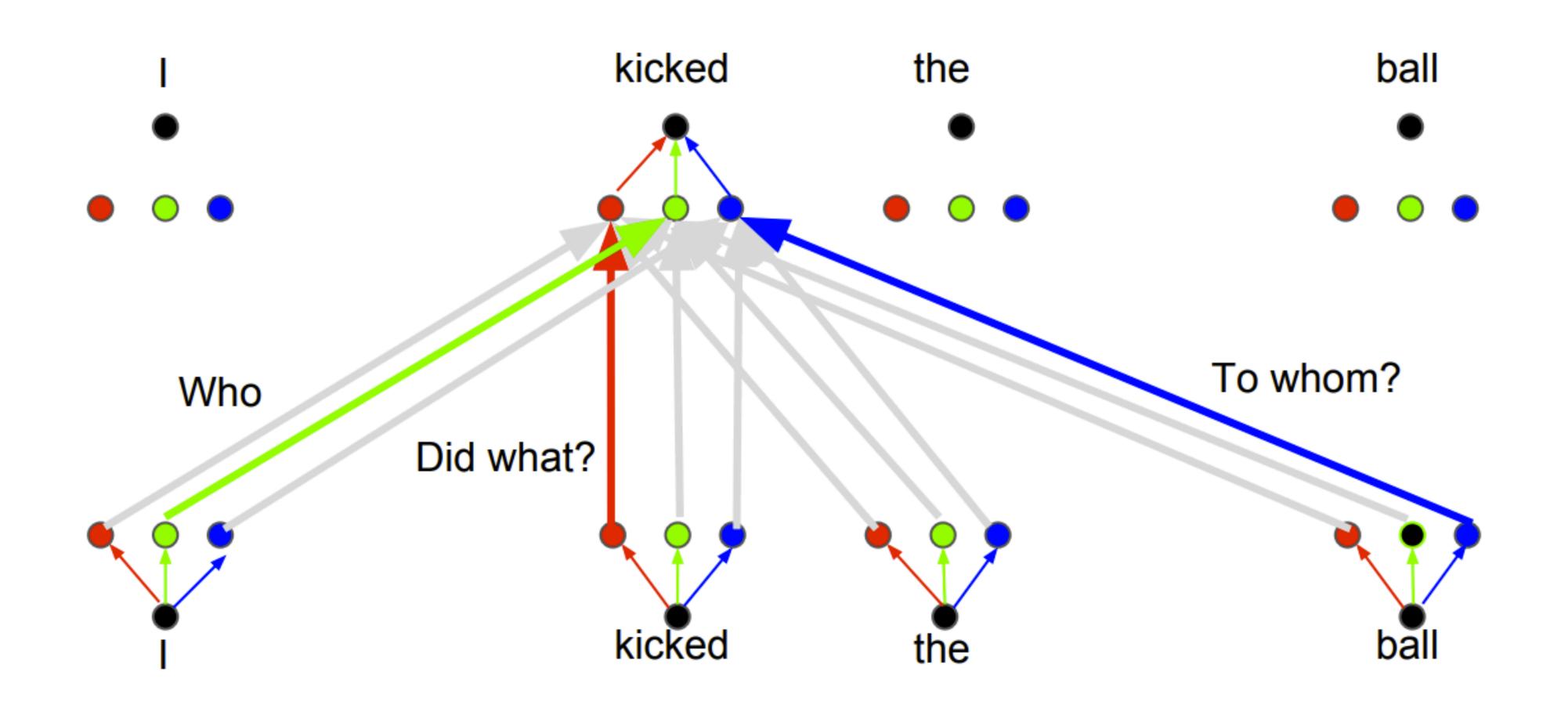
Multi-head



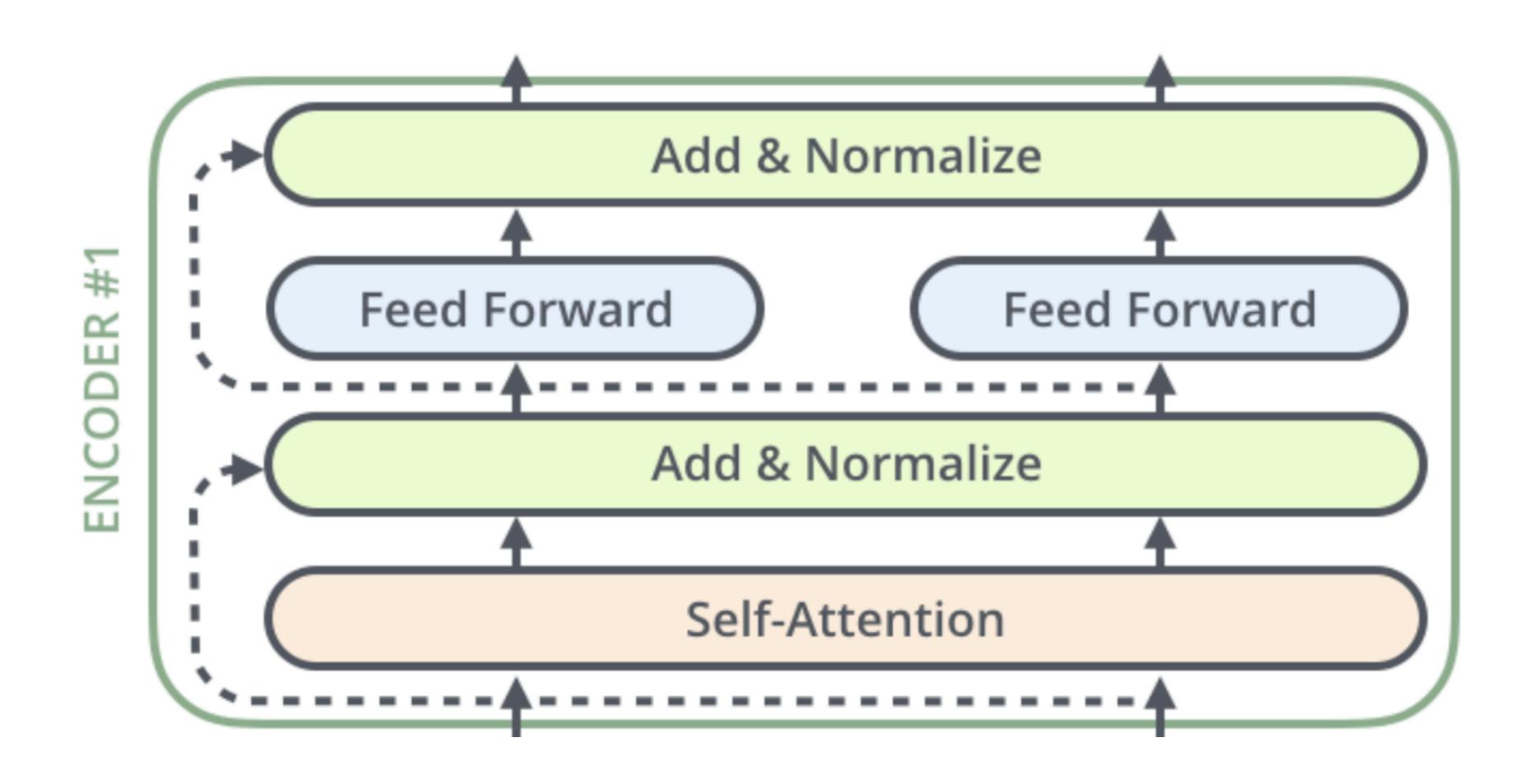
Multi-head



Multi-head



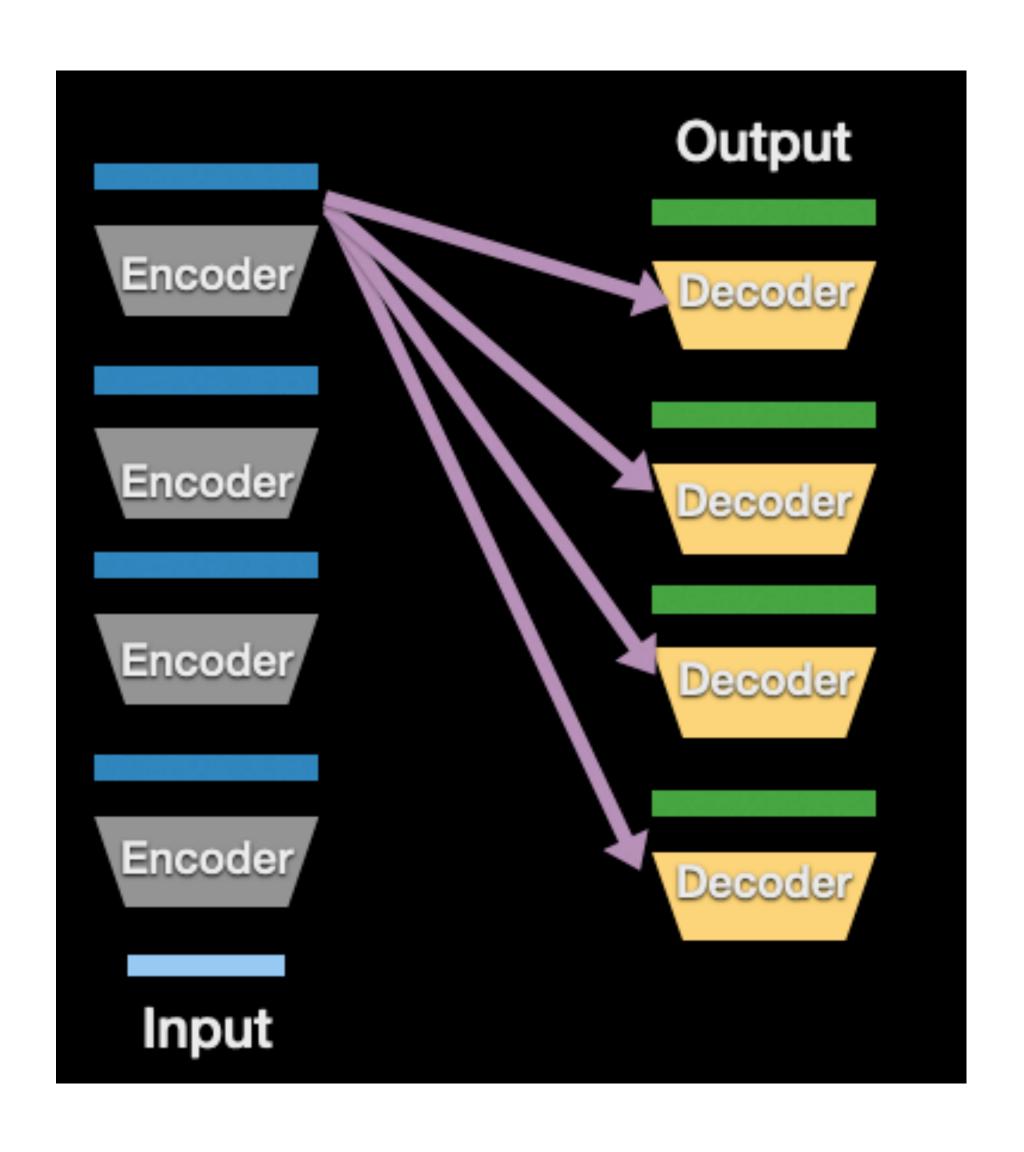
Transformer encoder



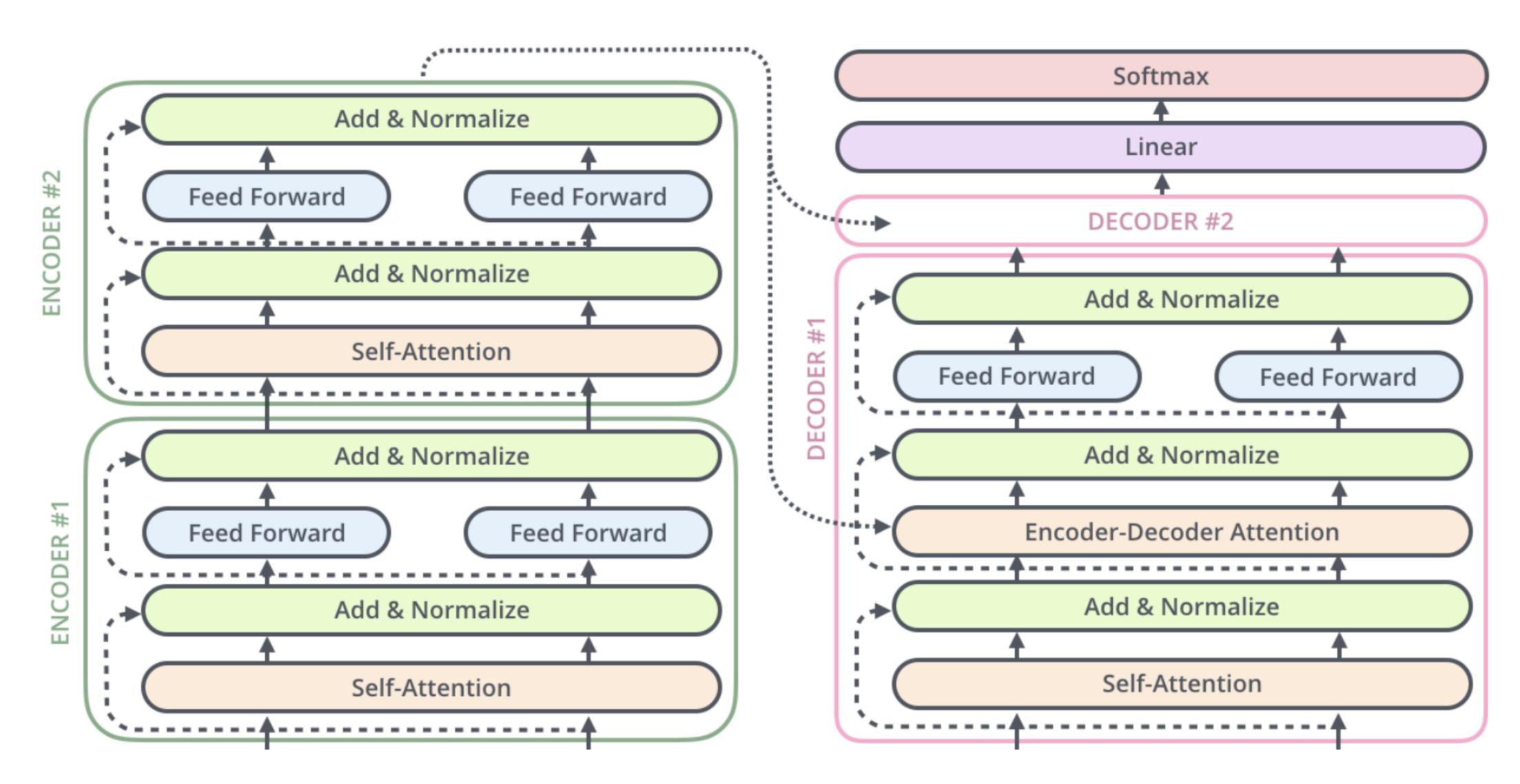
Transformer

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax DECODER **ENCODER ENCODER DECODER EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS** étudiant suis **INPUT**

Encoder-Decoder Attention



Transformer decoder



Pics taken from: https://jalammar.github.io/illustrated-transformer/

Transformer Example

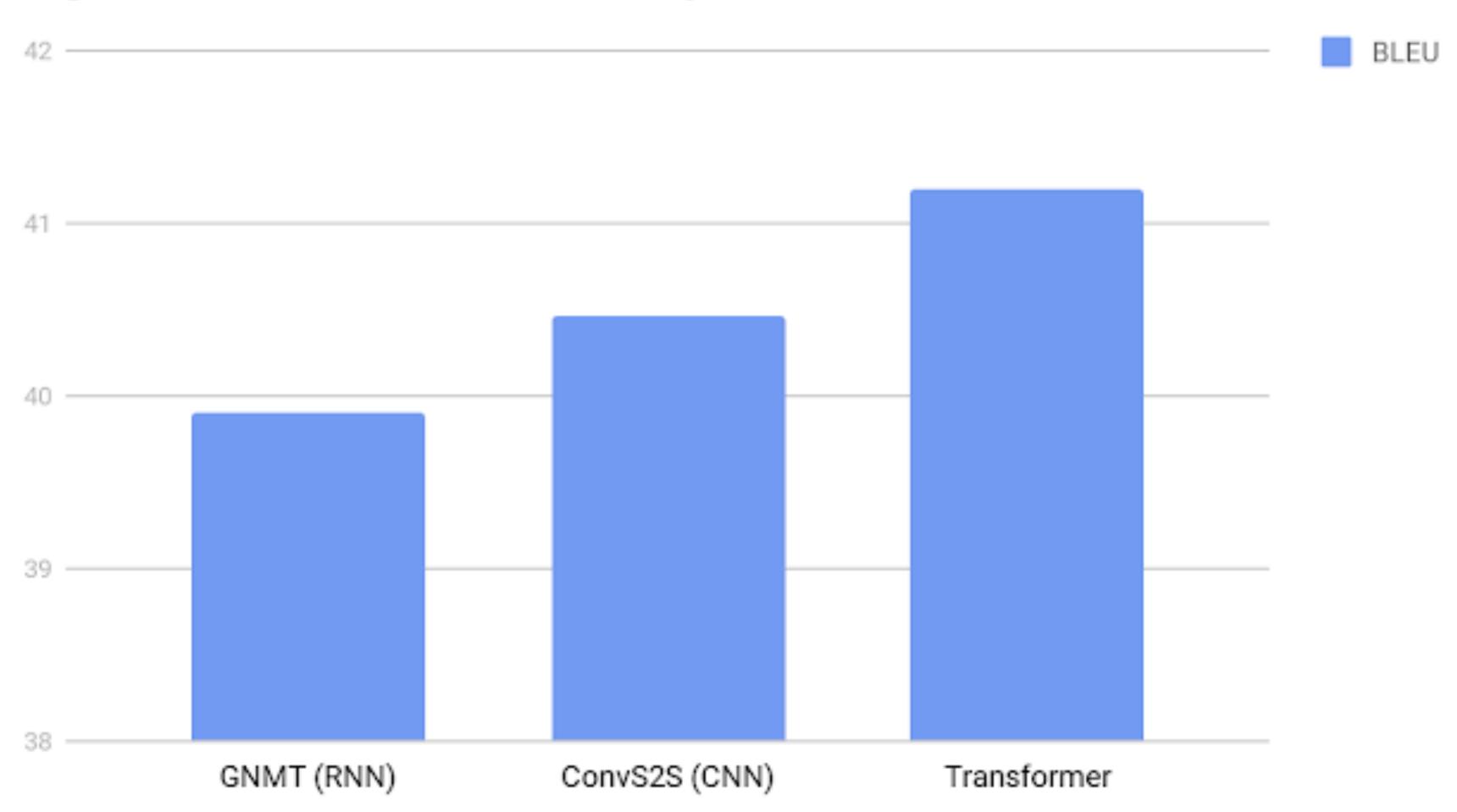
Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant suis Je INPUT OUTPUTS

Pics taken from: https://jalammar.github.io/illustrated-transformer/

Neural Machine Translation Example

Neural Machine Translation Example

English French Translation Quality

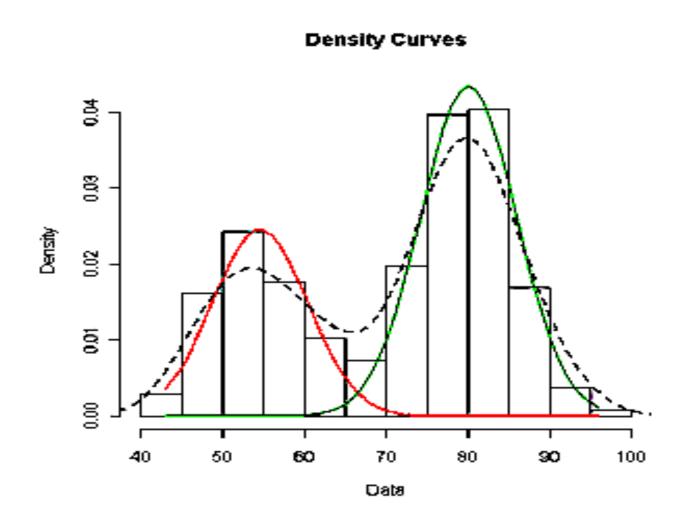


Unsupervised Learning

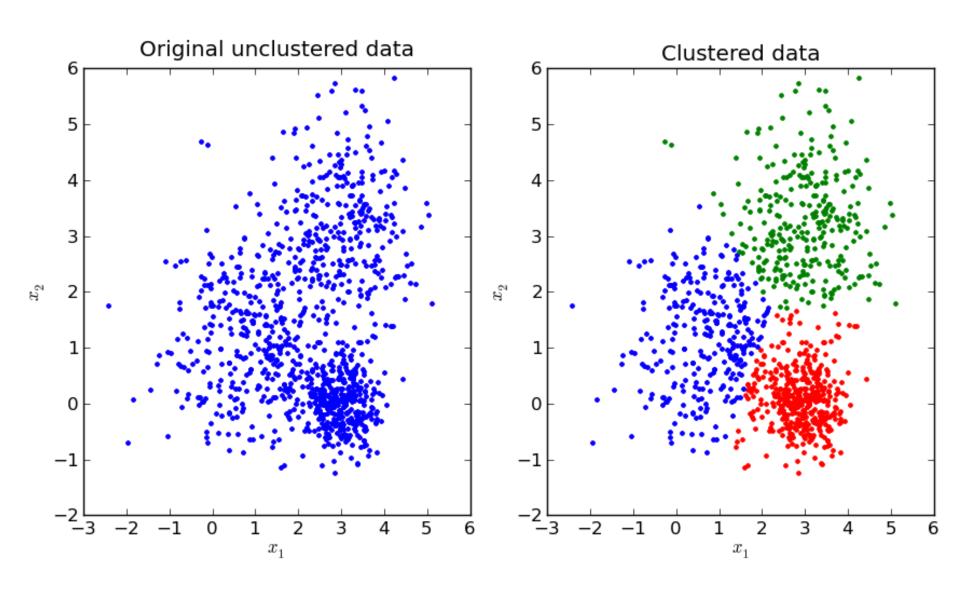
Unsupervised Learning

- Developing models that do not need labels
 - · May model the generation of data.
 - May allow generation of new data samples
- Broad strategies for unsupervised learning

Learning the distribution of the data

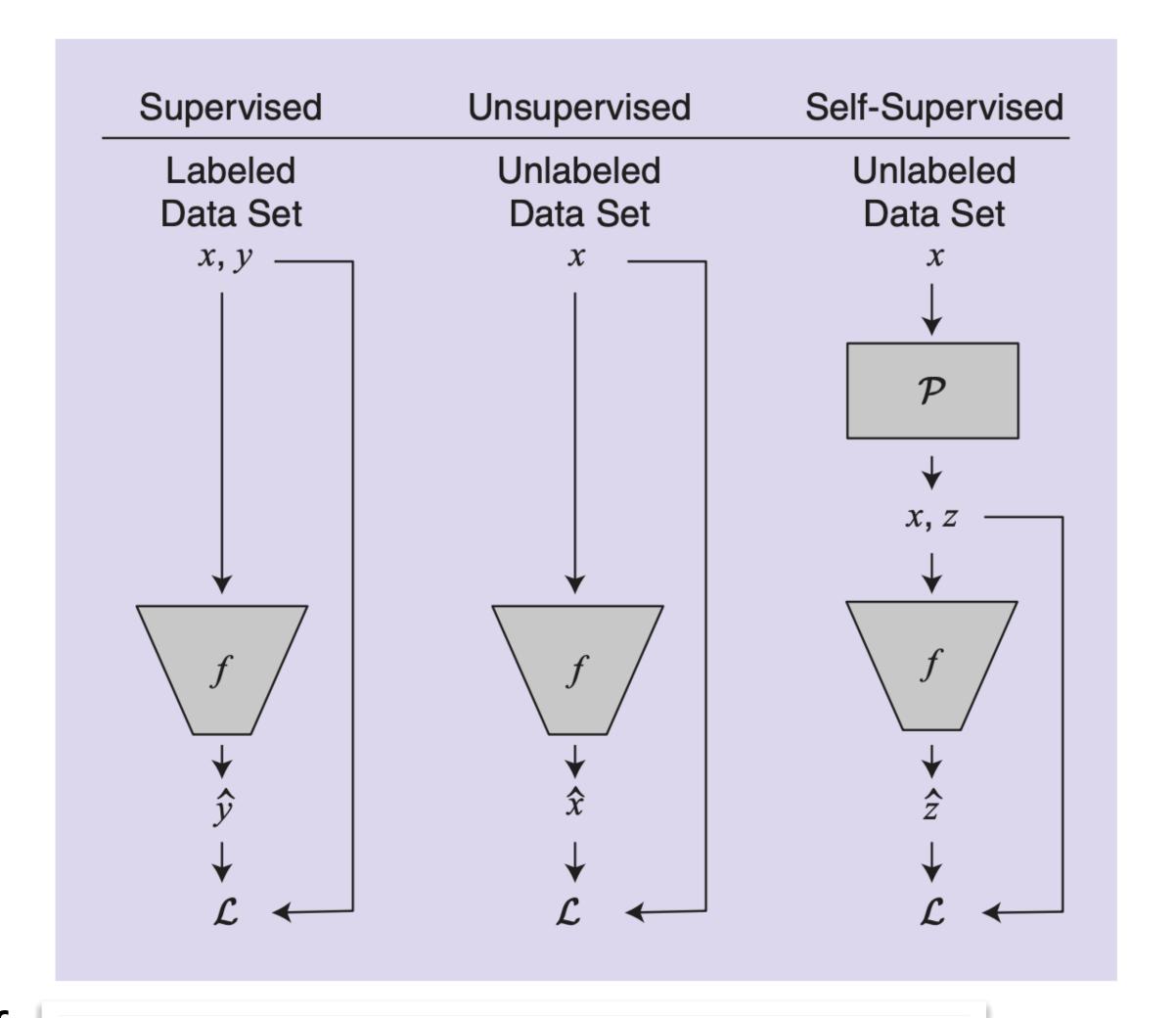


Detecting clusters in the data



Self supervision

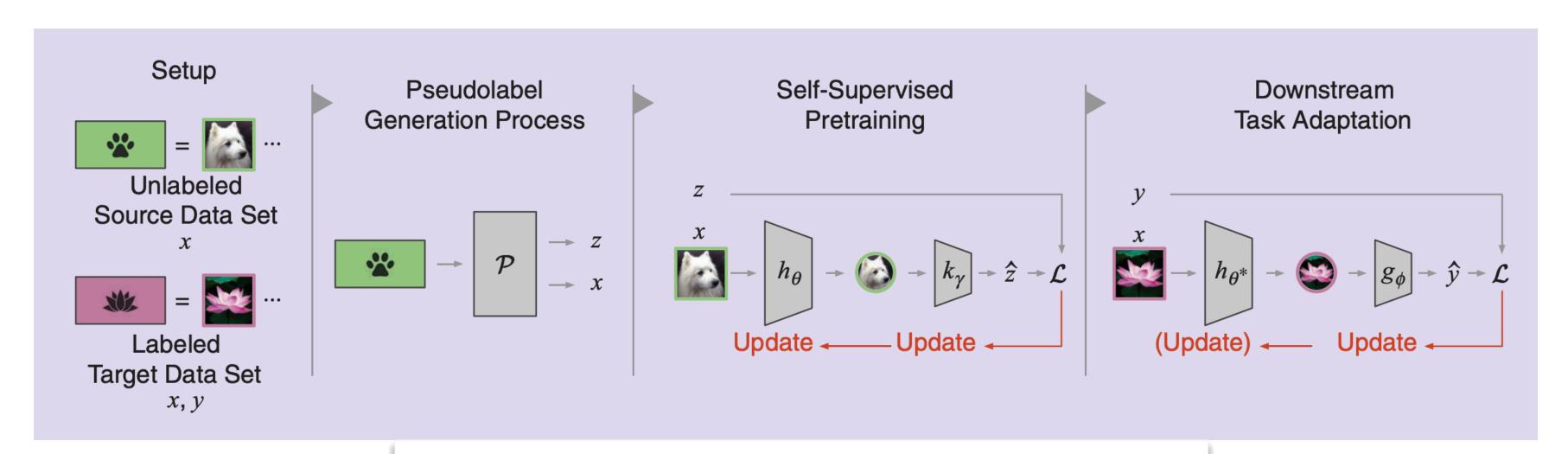
- ◆ Different from supervised and unsupervised learning
 - *Does not perform distribution learning or reconstruction
 - *Uses a pretext task
 - * Performing contrastive or predictive learning
- ◆ Using large volumes of unsupervised data



Ericsson, Linus, et al. "Self-supervised representation learning: Introduction, advances, and challenges." *IEEE Signal Processing Magazine* 39.3 (2022): 42-62.

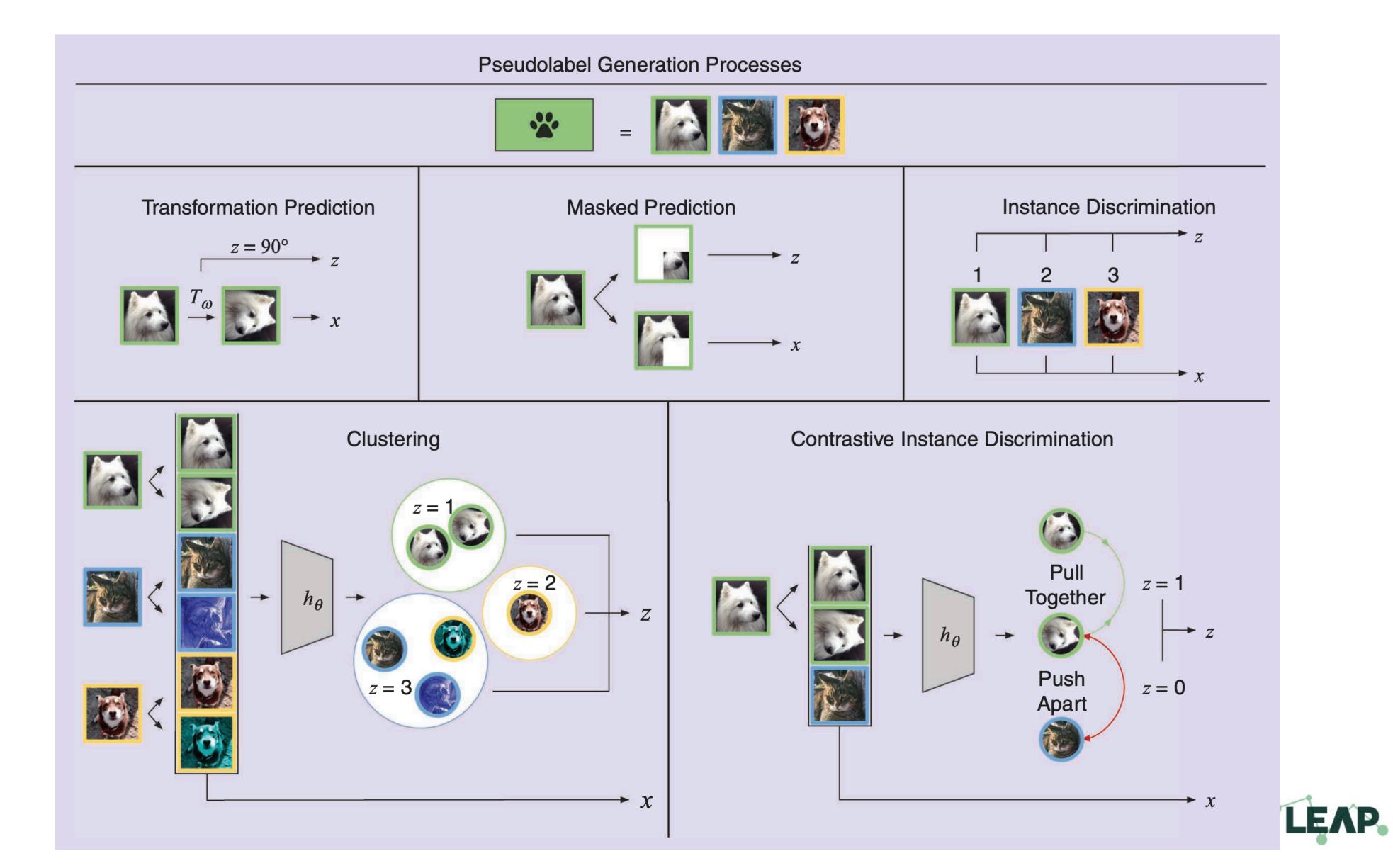
Self supervision - principle

- ◆ Two levels of modeling with unsupervised data
 - Generating a pseudo-label
 - Learning the upstream model
- ◆ Downstream task performs fine-tuning of the SSL model.



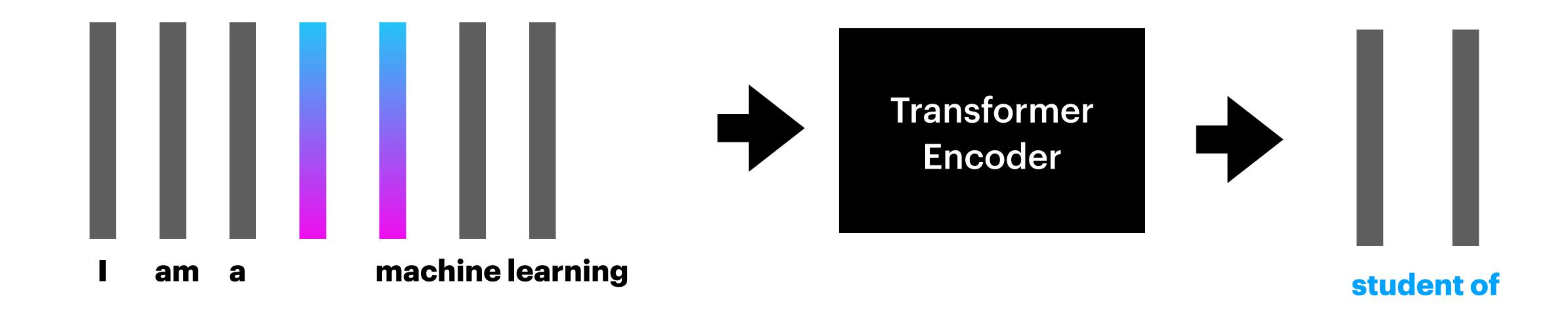
Ericsson, Linus, et al. "Self-supervised representation learning: Introduction, advances, and challenges." *IEEE Signal Processing Magazine* 39.3 (2022): 42-62.

Self supervision - pre-text task



Self-supervision as a task

- Masking out portions of the input data
 - *Pass the rest of the embeddings (with zeros or random entries at the masked locations) to the transformer encoder
 - *Have the model predict the word tokens in the masked portions Masked Language Modelling (MLM)



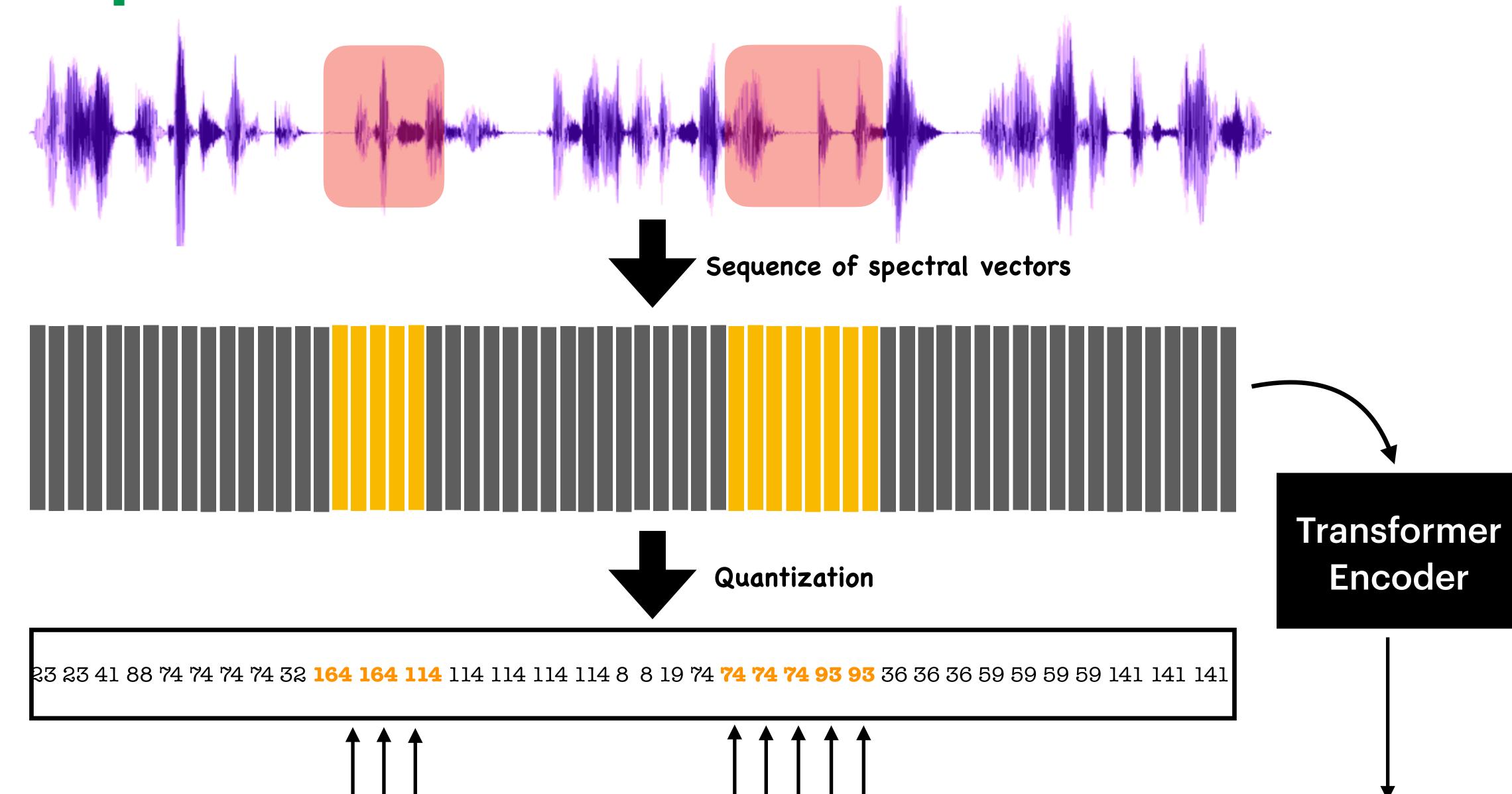
Large language models (LLMs)

- Extending the task of self-supervision
- Mine lots of text data
 - * Crawled from the web, as well as, from other resources.
- Design the model with large capacity (Millions -> Billions of parameters)
- Pre-train the model
 - *With MLM and similar style of losses
 - *High resource of computations.
- Final trained model can be fine-tuned for supervised tasks
 - *Load the parameters as initialization and perform supervised learning.

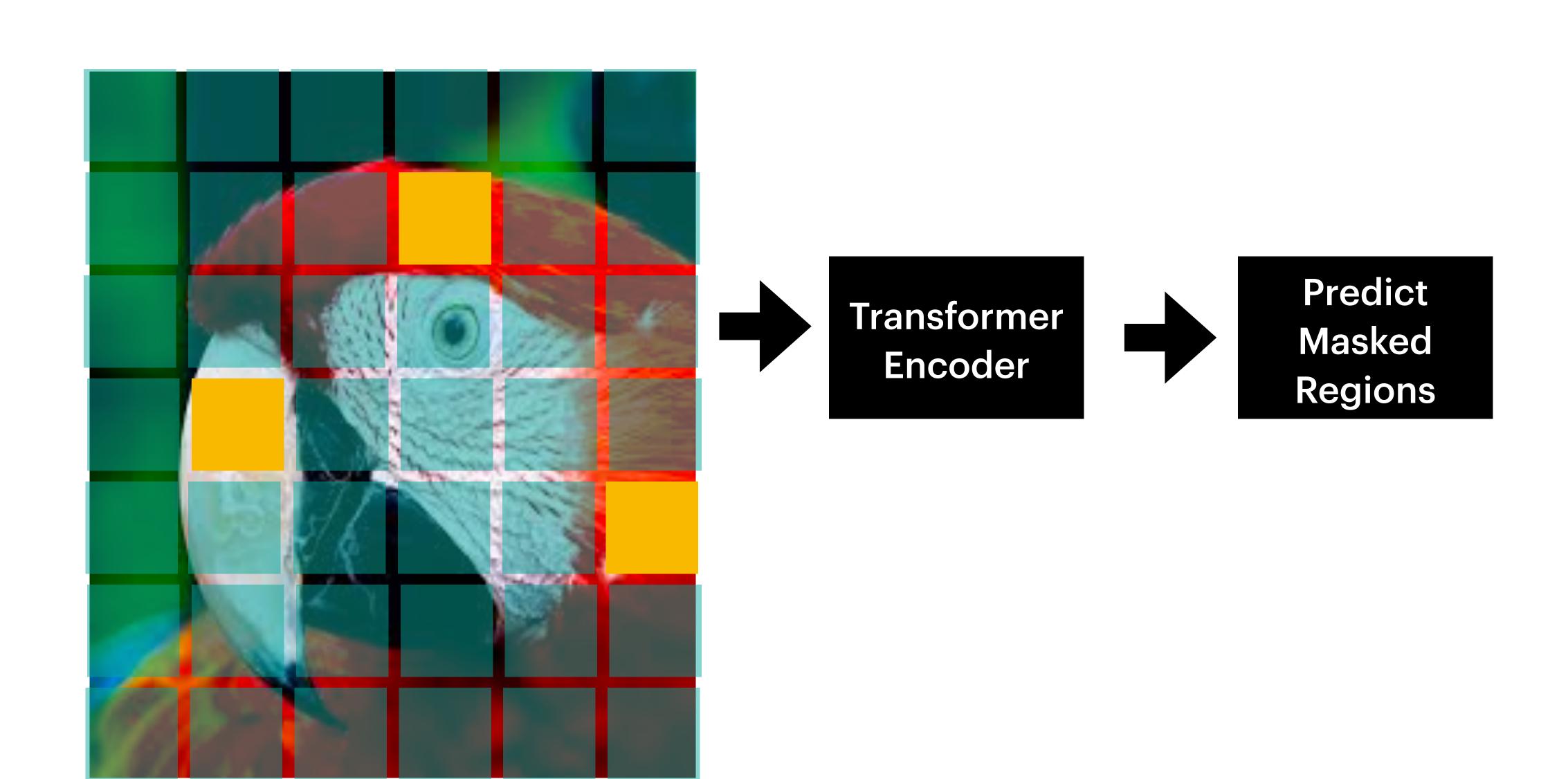
Large language models (LLMs)

- Self-supervised learning
 - * Has shown emergent abilities to generalise to wide variety of downstream tasks.
 - Tasks that the model was not trained on
 - ✓ Not seen in smaller models
 - * Enables to build reasoning capabilities in the model.
 - *Applicable for several domains text, speech and images.

Self-supervision in audio - wav2vec



Self-supervision in images - Vision Transformer



LLM-Examples

• Generative Pre-trained Transformers (GPT) series

	Architecture	Data Used	Model Size
GPT-1	Transformer (12 layer, decoder only model)	Book Corpus (4.5GB)	117M
GPT-2	GPT-1 with additional normalisation layers	Web Text (40GB)	1.5B
GPT-3/3.5	GPT-2 with more layers Adding Fine-tuning tasks and human feedback	Large Web Crawl (570B)	175B
GPT-4/4o	Details Undisclosed [Trained with Text + Images]		

Future works (some already underway)

- Multi-modal
 - *Incorporating learning across modalities
 - ✓ Create a domain specific encoder/decoder and learning the joint language model.
- Combining some labeled data with the self-supervised data to further improve the models.
 - V Current models like GPT use human feedback.
- Understanding the risks and vulnerabilities of these models.

THANK YOU

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc sriramg@iisc.ac.in

