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Long-term Dependency Issues
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Attention in LSTM Network
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Encoder - Decoder Networks with Attention

P e s M i Wl

Encoder 8 |I™| 61 |™>| 62 |™>| 63 |™>| 8¢ |™>| 65 |™>| ©¢
Decoder do > d; > ds > ds;
| l | |

Knowledge IS power <end>



Encoder-Decoder Attention
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Selt-Attention Models
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Natural language processing - representations of text

* Converting text into fixed representations in a vector space.

Vocabulary

Wtrd

* Using one-hot vectors is really high dimensional.

* Need a concise word representations that embeds semantics.



word2vec models as text representations

Training
Samples

Source Text

brown |fox jumps over the lazy dog. = (the, quick)
(the, brown)

The brown jumps over the lazy dog. = (quick, the)

(quick, brown)
(quick, fox)

quic fox|jumps|over the lazy dog. = (brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

jumps the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)



word2vec representations
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word2vec models as text representations

INPUT  PROJECTION  OUTPUT INPUT  PROJECTION OUTPUT
w(t-2) (— wit-2)
w(t-1) wit-1)

SUM
S—— wit) wit) R
wit+1) wit+1)
w(t+2) w(t+2)
CBOW Skip-gram




word2vec representations
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word2vec visualization
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Word Embeddings



Transformers

* Embedding context in sequence inputs

Word
Embeddings

|l am a student



Transformers - self-attention

* Embedding context in sequence inputs

X Let us take an example

|l am a student
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Transformers - self-attention

* Embedding context in sequence inputs
X Let us take an example

* Using word embeddings as the input representation

— : D
X={X,X,,...X7};X, EA
Word
Embeddings

|l am a student

] am a student

A

v

|l am a student




Transformers - self-attention

K = {k..k,,...k;}; k, € %P

‘ {V19V29- VT} V = %D

T {X19X29- XT} X = %D

Q=1{q;,q...X7};q, € Z

|l am a student

Word

Embeddlngs




Transformers - self-attention

Il am a student

Q — {q19q29°°'qT};qt€ %D

] am a student '

|l am a student

K= {k.k, ...k }:k € %"
I am a student K
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Transformers - self-attention

Il am a student

K= {k.Kk,,...k;};k, € %"

|l am a student

Q=1{q,.q--q7};q, € #°
S S ={V,Vs,...V;}; V. € R

|l am a student

] am a student K I am a student
ql kl ql k2000
softmax(Q'K)
| am a student Q o |l am a student

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformers - self-attention

Il am a student

K= {k.Kk,,...k;};k, € %"

|l am a student

Q:{q7q"°°q };qE%D
S S ={V,Vs,...V;}; V. € R

|l am a student

I am a student K Il am a student

/ql k2 000 ‘// T
softmax(Q” K)

] am a student Q I am a student

4, kl

V X softmax(Q'K)
Weigh

Each word
With mask

Softmax

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformers - self-attention
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Transformers - self-attention

Input Thinking Machines
Embedding X1 | | | X2 | | |
Queries qa L[ g L[
Keys ki [ | ke [ ]|
Values vi L[ v. [

Score qi® ki=112 g1 ® k2 =96




Transformers - self-attention

Input Thinking Machines
Embedding X1 X2

Queries q1 g2

Keys K K2

Values V1 V2

Score qi® Ki= qi * k2 =

Divide by 8 (/dx. )

Softmax



Transformers - self-attention

Input Thinking Machines
Embedding X1 X2

Queries q1 g2

Keys K1 K2

Values V1 V2

Score g1 e ki=112 g1 ® k2 =96

Divide by 8 (/d ) 14 15

Softmax

Softmax
X V1 V2
Value

Sum Z1 Z2




Multi-head
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Multi-head
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Multi-head

| Kicked the ball
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Transformer encoder
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Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformer

Decoding time step:@Z 3456 OUTPUT

Linear + Softmax

ENCODER : DECODER
ENCODER DECODER

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT Je Suis étudiant

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformer decoder
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Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformer Example

Decoding time step: 1@3 4 5 6 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

Kencdec Vencdec Linear T SOftmax

T
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Pics taken from : https://jalammar.github.io/illustrated-transformer/



Unsupervised Learning



Unsupervised Learning

Developing models that do not need labels
May model the generation of data.
May allow generation of new data samples
Broad strategies for unsupervised learning

Learning the distribution of the data Detecting clusters in the data

Original unclustered data Clustered data
bm—m—m—m———————— bm—m——m—m———————
Density Curves S5t S5t
4t 4t
=
(=)
il ‘\ 3t 3t
2 2 I
= { 2t 2t
&
g5 = 1 1t
= ,' “~ ¥
\\ ,’
i > A s OF O
= 4 o 3
= A A k‘ A A
27 LN B B
= L\'-H-‘.
-~ . . _2 llllllll _2 llllllll
-3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6
60 20 100 T, A



Self supervision

4 Different from Supervised Unsupervised Self-Supervised
: Labeled Unlabeled Unlabeled
SuperVISe.d and . Data Set Data Set Data Set
unsupervised learning X,y —— — ic
* Does not perform P
distribution learning .
or reconstruction X, 2

* Uses a pretext task

<<
<<
<e

* Performing
contrastive or
predictive learning

D € <) <€

4+ Using large volumes of
. Ericsson, Linus, et al. "Self-supervised representation learning: Introduction,
unsupervi Sed d ata advances, and challenges." IEEE Signal Processing Magazine 39.3 (2022): 42-62.




Self supervision - principle

4+ Two levels of modeling with unsupervised data
* Generating a pseudo-label
* Learning the upstream model

+ Downstream task performs fine-tuning of the SSL model.

Setup

Pseudolabel Self-Supervised Downstream
Generation Process Pretraining Task Adaptation
Unlabeled z ¥y
Source Data Set
X

Labeled Update «——— Update (Update) «—— Update

Target Data Set
X,y

Ericsson, Linus, et al. "Self-supervised representation learning: Introduction,
advances, and challenges." IEEE Signal Processing Magazine 39.3 (2022): 42-62. LE AP




Self supervision - pre-text task

Pseudolabel Generation Processes
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Self-supervision as a task

e Masking out portions of the input data

* Pass the rest of the embeddings (with zeros or random entries at the
masked locations) to the transformer encoder

* Have the model predict the word tokens in the masked portions - Masked

Language Modelling (MLM)

* Transformer
Encoder
student of

am a machine learning




Large language models (LLMs)

e Extending the task of self-supervision
® Mine lots of text data
* Crawled from the web, as well as, from other resources.
e Design the model with large capacity (Millions — Billions of parameters)
® Pre-train the model
*With MLM and similar style of losses
* High resource of computations.
e Final trained model can be fine-funed for supervised tasks

* Load the parameters as initialization and perform supervised learning.



Large language models (LLMs)

e Self-supervised learning

* Has shown emergent abilities to generalise to wide variety of downstream
tasks.

v Tasks that the model was not trained on
v Not seen in smaller models
* Enables to build reasoning capabilities in the model.

* Applicable for several domains - text, speech and images.



Self-supervision in audio - wav2vec

MH obs | % H+ M&M*

e of spectral vectors

—

Transformer
Encoder
41



Self-supervision in images - Vision Transformer

Predict
Transformer
Masked
Encoder

Regions




Future works (some already underway)

¢ Multi-modal
* Incorporating learning across modalities

v Create a domain specific encoder/decoder and learning the joint language
model.

e Combining some labeled data with the self-supervised data to further
improve the models.

v Current models like GPT use human feedback.

e Understanding the risks and vulnerabilities of these models.
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