MACHINE LEARNING FOR SIGNAL PROCESSING 19 - 3 - 2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/

Feed-forward Models

Deep neural architectures Convolutional Neural N/w

Recurrent

Neural N/w

Long-term Dependency Issues

Attention in LSTM Networks

- * Attentions allows a mechanism to add relevance
 - than the rest for the task at hand.

* Certain regions of the audio have more importance

Encoder - Decoder Networks with Attention

Encoder-Decoder Attention

Self-Attention Models

Natural language processing - representations of text

Converting text into fixed representations in a vector space.

Using one-hot vectors is really high dimensional.

* Need a concise word representations that embeds semantics.

word2vec models as text representations

Source Text

The	quick	brown	fox	jumps	over	
-----	-------	-------	-----	-------	------	--

The quick brown	fox	jumps	over
------------------------	-----	-------	------

The	quick	brown	fox	jumps	over
-----	-------	-------	-----	-------	------

The	quick	brown	fox	jumps	over
-----	-------	-------	-----	-------	------

Training Samples

- the lazy dog. \longrightarrow (quick, the) (quick, brown) (quick, fox)
- the lazy dog. ⇒
- (brown, the) (brown, quick) (brown, fox) (brown, jumps)

the lazy dog. 👄

(fox, quick) (fox, brown) (fox, jumps) (fox, over)

word2vec representations

word2vec models as text representations

word2vec representations

word2vec visualization

Transformers

• Embedding context in sequence inputs

Word Embeddings

I am a student

• Embedding context in sequence inputs *Let us take an example

Word Embeddings

I am a student

• Embedding context in sequence inputs *Let us take an example *Using word embeddings as the input representation

$\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

$\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{x}_T\}; \mathbf{q}_t \in \mathscr{R}^D$

am

a student $\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

am

a student am $\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_T\}; \mathbf{q}_t \in \mathscr{R}^D$

Pics taken from : https://jalammar.github.io/illustrated-transformer/

a student $\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

$\mathbf{K} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_T\}; \mathbf{v}_t \in \mathscr{R}^D$ a student am

am

a student am $\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_T\}; \mathbf{q}_t \in \mathscr{R}^D$

Pics taken from : https://jalammar.github.io/illustrated-transformer/

a student $\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

WV

Wκ

WQ

Machines

q₁ • **k**₂ = 96

Machines **X**2 q₂ k₂ V₂ $q_1 \cdot k_2 = 96$ 12 0.12 V2

Z2

Multi-head

Who

Multi-head

Multi-head

Transformer encoder

Pics taken from : https://jalammar.github.io/illustrated-transformer/

Transformer

Decoding time step: 1 2 3 4 5 6

Pics taken from : https://jalammar.github.io/illustrated-transformer/

Transformer decoder

Pics taken from : https://jalammar.github.io/illustrated-transformer/

Transformer Example

Decoding time step: 1 2 3 4 5 6

Pics taken from : https://jalammar.github.io/illustrated-transformer/

OUTPUT

Unsupervised Learning

Unsupervised Learning

- Developing models that do not need labels
 - May model the generation of data.
 - May allow generation of new data samples
- Broad strategies for unsupervised learning

Learning the distribution of the data

t need labels data. data samples ised learning

Detecting clusters in the data

Self supervision

 Different from supervised and unsupervised learning

* Does not perform distribution learning or reconstruction

*Uses a pretext task

* Performing contrastive or predictive learning

 Using large volumes of unsupervised data

Ericsson, Linus, et al. "Self-supervised representation learning: Introduction, advances, and challenges." *IEEE Signal Processing Magazine* 39.3 (2022): 42-62.

Self supervision - principle

Two levels of modeling with unsupervised data

- Generating a pseudo-label
- Learning the upstream model

Ericsson, Linus, et al. "Self-supervised representation learning: Introduction, advances, and challenges." IEEE Signal Processing Magazine 39.3 (2022): 42-62.

Downstream task performs fine-tuning of the SSL model.

Self supervision - pre-text task

Self-supervision as a task

- Masking out portions of the input data
 - * Pass the rest of the embeddings (with zeros or random entries at the masked locations) to the transformer encoder
 - *Have the model predict the word tokens in the masked portions Masked Language Modelling (MLM)

Large language models (LLMs)

- Extending the task of self-supervision
- Mine lots of text data * Crawled from the web, as well as, from other resources.
- Design the model with large capacity (Millions -> Billions of parameters)
- Pre-train the model
 - *With MLM and similar style of losses

*High resource of computations.

 Final trained model can be fine-tuned for supervised tasks *Load the parameters as initialization and perform supervised learning.

Large language models (LLMs)

- Self-supervised learning
 - * Has shown emergent abilities to generalise to wide variety of downstream tasks.
 - ✓ Tasks that the model was not trained on
 - ✓ Not seen in smaller models
 - *Enables to build reasoning capabilities in the model.
 - * Applicable for several domains text, speech and images.

Self-supervision in images - Vision Transformer

Future works (some already underway)

- Multi-modal
 - *Incorporating learning across modalities
 - I Create a domain specific encoder/decoder and learning the joint language model.
- Combining some labeled data with the self-supervised data to further improve the models.
 - ✓ Current models like GPT use human feedback.
- Understanding the risks and vulnerabilities of these models.

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

