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RECURRENT NEURAL NETWORIKS




INTRODUCTION

» The standard DNN/CNN paradigms
* (x,v) - ordered pair of data vectors/images (x) and target ()
» Moving to sequence data
* (x(t),y(t)) where this could be sequence to sequence mapping task.
* (x(t),y) where this could be a sequence to vector mapping task.
+ Input features / output targets are correlated in time.
+ Unlike standard models where each pair is independent.

+ Need to model dependencies in the sequence over time.



WHY DO NEED RECURRENT MODELS

» An interesting subset of this problem is where the input alone is a time series
or have different indices (%), y

» Examples
+ Text sequences
+ Speech and audio
+ Video sequences

+ ECG/EEG data

+ Wearable sensor data



FIRST ORDER RECURRENCE - HIDDEN LAYER

» Making the hidden layer a function of the previous outputs from the hidden layer
along with the input

h(t) = £ (h(t —1),2(t))




BACK PROPAGATION THROUGH TIME
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LONG-TERM DEPENDENCY ISSUES




LONG-TERM DEPENDENCY ISSUES

+ Gradients tend to vanish or explode

sigmoid function derivative of sigmoid
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LONG SHORT TERM MEMORY (LSTM) IDEA
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MODELING QUESTIONS

» How can we make adaptable gates with neural networks
* How can we make gates dependent on the data itself.
+ Gates can be implemented as neural layers with sigmoidal outputs ?
Sigmoids can approximate 0-1 functions

v Modulate the gate output with inputs, hidden layer outputs or outputs



Recurrent Networks

Multiple Input
Single Output




Recurrent Networks

Single Input
Multiple Output




Recurrent Networks

Bi-directional
Networks




Recurrent Networks

Sequence to
Sequence
Mapping Networks




Long-term Dependency Issues
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Attention in LSTM Network
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Encoder - Decoder Networks with Attention
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Selt-Attention Models
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Natural language processing - representations of text

* Converting text into fixed representations in a vector space.

Vocabulary

Wtrd

* Using one-hot vectors is really high dimensional.

* Need a concise word representations that embeds semantics.



word2vec models as text representations

Training
Samples

Source Text

brown |fox jumps over the lazy dog. = (the, quick)
(the, brown)

The brown jumps over the lazy dog. = (quick, the)

(quick, brown)
(quick, fox)

quic fox|jumps|over the lazy dog. = (brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

jumps the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)



word2vec representations
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word2vec models as text representations

INPUT  PROJECTION  OUTPUT INPUT  PROJECTION OUTPUT
w(t-2) (— wit-2)
w(t-1) wit-1)

SUM
S—— wit) wit) R
wit+1) wit+1)
w(t+2) w(t+2)
CBOW Skip-gram




word2vec representations
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word2vec visualization

Seattle
-

Document x Boston Document Y
4 - @ lecture ~ ™
Gave Had Va Had
research Gave talk science
talk lecture
" " research in
Boston py '\ Seattle
\_ y, © . \_ ),

science AT
)/ oy

Word Embeddings



Transformers

* Embedding context in sequence inputs

Word
Embeddings

|l am a student



Transformers - self-attention

* Embedding context in sequence inputs

X Let us take an example

|l am a student

v

|l am a student

Word
Embeddings

|l am a student



Transformers - self-attention

* Embedding context in sequence inputs
X Let us take an example

* Using word embeddings as the input representation

— : D
X={X,X,,...X7};X, EA
Word
Embeddings
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Transformers - self-attention

K = {k..k,,...k;}; k, € %P

‘ {V19V29- VT} V = %D

T {X19X29- XT} X = %D
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Transformers - self-attention

Il am a student

Q — {q19q29°°'qT};qt€ %D

] am a student '

|l am a student
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Transformers - self-attention

Il am a student

K= {k.Kk,,...k;};k, € %"

|l am a student

Q=1{q,.q--q7};q, € #°
S S ={V,Vs,...V;}; V. € R

|l am a student

] am a student K I am a student
ql kl ql k2000
softmax(Q'K)
| am a student Q o |l am a student

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformers - self-attention

Il am a student

K= {k.Kk,,...k;};k, € %"

|l am a student

Q:{q7q"°°q };qE%D
S S ={V,Vs,...V;}; V. € R

|l am a student

I am a student K Il am a student

/ql k2 000 ‘// T
softmax(Q” K)

] am a student Q I am a student

4, kl

V X softmax(Q'K)
Weigh

Each word
With mask

Softmax

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformer encoder
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Transformer

Decoding time step:@Z 3456 OUTPUT

Linear + Softmax

ENCODER : DECODER
ENCODER DECODER

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT Je Suis étudiant

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformer decoder

...“..llll.lllll..

0...
ooooo

DECODER #2

>
P Add & Normalize

Feed Forward Feed Forward

> Add & Normalize
v A

I
Il
..... . X
TP Encoder-Decoder Attention
‘

ENCODER #2

DECODER #1

ENCODER #1

Self-Attention E Self-Attention

Pics taken from : https://jalammar.github.io/illustrated-transformer/



Transformer Example

Decoding time step: 1@3 4 5 6 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

Kencdec Vencdec Linear T SOftmax

T

ENCODERS DECODERS

Je SUis étudiant PREVIOUS
OUTPUTS

Pics taken from : https://jalammar.github.io/illustrated-transformer/
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