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Neural network architectures



WHAT MAKES DNN SUBOPTIMAL FOR IMAGES 
➤ Vectorizing images  

➤ Ignores the local correlations in the pixels 

➤ geometric structure is not exploited in images 

Vectorize



CONVOLUTIONAL NEURAL NETWORKS

➤ 2-D convolution 



CONVOLUTIONAL NEURAL NETWORKS 

➤ Reduce the size of images after convolution using pooling  

➤ Keep local maximum 



CONVOLUTIONAL NEURAL NETWORKS 

Multiple levels of filtering and subsampling 
operations.

Feature maps are generated at every layer.



Backpropagation in CNNs



PROPERTIES OF CNN
➤ Reduce number of parameters  

➤ due to weight sharing. 

➤ Depth does not necessarily increase 
the parameter size. 

➤ Preserving local structure  

➤ CNN filters operate on local weights 

➤ Deeper layers  

➤ capture wider input context. 

➤ Training is more memory intensive 

➤ Accumulate gradients.



CNNS FOR MNIST 
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Recurrent neural networks



INTRODUCTION
➤ The standard DNN/CNN paradigms 

✴ (x,y) - ordered pair of data vectors/images (x) and target (y) 
➤ Moving to sequence data 

✴ (x(t),y(t)) where this could be sequence to sequence mapping task. 
✴ (x(t),y) where this could be a sequence to vector mapping task. 

✦ Input features / output targets are correlated in time. 
✦ Unlike standard models where each pair is independent. 
✦ Need to model dependencies in the sequence over time.



WHY DO NEED RECURRENT MODELS
➤ An interesting subset of this problem is where the input alone is a time series                  

or have different indices 

➤ Examples 
✦ Text sequences  
✦ Speech and audio 
✦ Video sequences  
✦ ECG/EEG data 
✦ Wearable sensor data



FIRST ORDER RECURRENCE - HIDDEN LAYER
➤ Making the hidden layer a function of the previous outputs from the hidden layer 

along with the input



FIRST ORDER RECURRENCE - HIDDEN LAYER
➤ Making the hidden layer a function of the previous outputs from the hidden layer along 

with the input. 

➤ Makes the hidden layer dependent of previous layer outputs in a recurring fashion.



FIRST ORDER RECURRENCE - HIDDEN LAYER
➤ Making the hidden layer a function of the previous outputs from the hidden layer along 

with the input. 

➤ Makes the hidden layer dependent of previous layer outputs in a recurring fashion.

Model Forward Pass - 1 hidden layer



ERROR BACKPROPAGATION
➤ Error functions are computed at every time-instant  

➤ Total error 



BACK PROPAGATION THROUGH TIME



LONG-TERM DEPENDENCY ISSUES 



LONG-TERM DEPENDENCY ISSUES 
✦ Gradients tend to vanish or explode 

✦ Intial frames may not have impact in the final predictions.           



LONG SHORT TERM MEMORY (LSTM) IDEA



MODELING QUESTIONS 

➤ How can we make adaptable gates with neural networks 

✴ How can we make gates dependent on the data itself. 

✦ Gates can be implemented as neural layers with sigmoidal outputs ? 

‣ Sigmoids can approximate 0-1 functions 

✓ Modulate the gate output with inputs, hidden layer outputs or outputs



Recurrent Networks

Multiple Input
Single Output



Recurrent Networks

Single Input
Multiple Output



Recurrent Networks

Bi-directional 
Networks



Recurrent Networks

Sequence to 
Sequence

Mapping Networks



Long-term Dependency Issues



Attention in LSTM Networks

❖ Attentions allows a mechanism to add relevance

❖ Certain regions of the audio have more importance 
than the rest for the task at hand.



Encoder - Decoder Networks with Attention



Self-Attention Models 



Natural language processing - representations of text

❖ Converting text into fixed representations in a vector space.

❖ Using one-hot vectors is really high dimensional.

❖ Need a concise word representations that embeds semantics. 



word2vec models as text representations



word2vec representations



word2vec models as text representations



word2vec representations



word2vec visualization



Transformers

• Embedding context in sequence inputs

I      am      a    student

Word 
Embeddings 



Transformers - self-attention

• Embedding context in sequence inputs
✴Let us take an example 

I      am      a    student

Word 
Embeddings 

I      am      a    student

I      am      a    student



Transformers - self-attention

• Embedding context in sequence inputs
✴Let us take an example 
✴Using word embeddings as the input representation 

I      am      a    student

Word 
Embeddings 

I      am      a    student

I      am      a    student

X = {x1, x2, . . . xT}; xt ∈ ℛD



Transformers - self-attention

I      am      a    student Word 
Embeddings 

X = {x1, x2, . . . xT}; xt ∈ ℛD

Q = {q1, q2, . . . xT}; qt ∈ ℛD

W̃ q

K = {k1, k2, . . . kT}; kt ∈ ℛD

W̃ k

W̃ v

K = {v1, v2, . . . vT}; vt ∈ ℛD



Transformers - self-attention

I      am      a    student Word 
Embeddings 

X = {x1, x2, . . . xT}; xt ∈ ℛD

Q = {q1, q2, . . . qT}; qt ∈ ℛD

W̃ q

K = {k1, k2, . . . kT}; kt ∈ ℛD

W̃ k

W̃ v

K = {v1, v2, . . . vT}; vt ∈ ℛDI      am      a    student

I      am      a    student

I      am      a    student

I      am      a    student

I      am      a    student Q

K
qT

1 k1 qT
1 k2



Transformers - self-attention

Pics taken from : https://jalammar.github.io/illustrated-transformer/

K = {k1, k2, . . . kT}; kt ∈ ℛD

K = {v1, v2, . . . vT}; vt ∈ ℛD

softmax(QTK)

I      am      a    student

I      am      a    student

I      am      a    student

I      am      a    student

I      am      a    student Q

K
qT

1 k1 qT
1 k2

Q = {q1, q2, . . . qT}; qt ∈ ℛD

Softmax

I      am      a    student

I      am      a    student



Transformers - self-attention

Pics taken from : https://jalammar.github.io/illustrated-transformer/

K = {k1, k2, . . . kT}; kt ∈ ℛD

K = {v1, v2, . . . vT}; vt ∈ ℛD

softmax(QTK)

I      am      a    student

I      am      a    student

I      am      a    student

I      am      a    student

I      am      a    student Q

K
qT

1 k1 qT
1 k2

Q = {q1, q2, . . . qT}; qt ∈ ℛD

Softmax

I      am      a    student

I      am      a    student
Weigh 

Each word 
With mask

V × softmax(QTK)
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