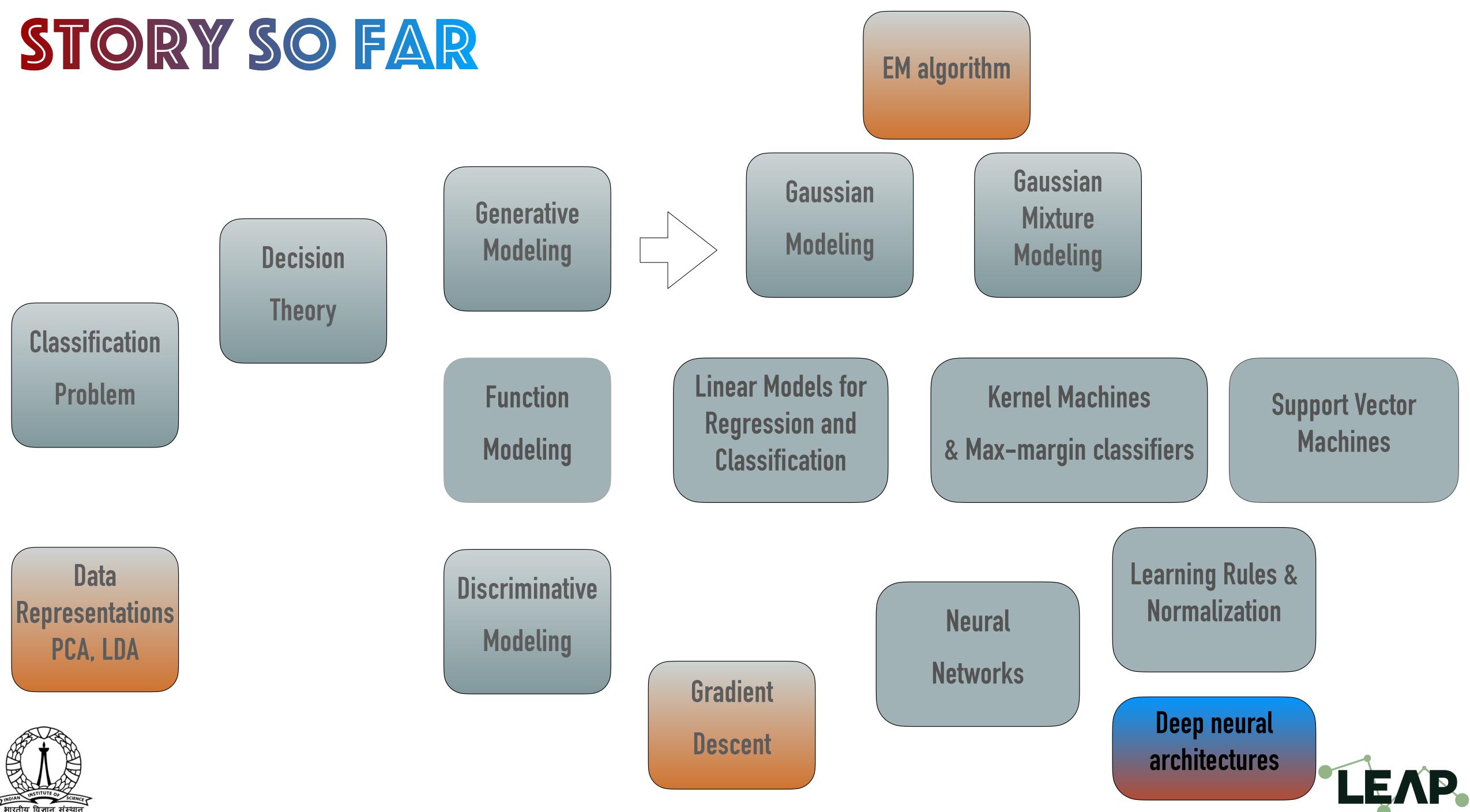
MACHINE LEARNING FOR SIGNAL PROCESSING 12 - 3 - 2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

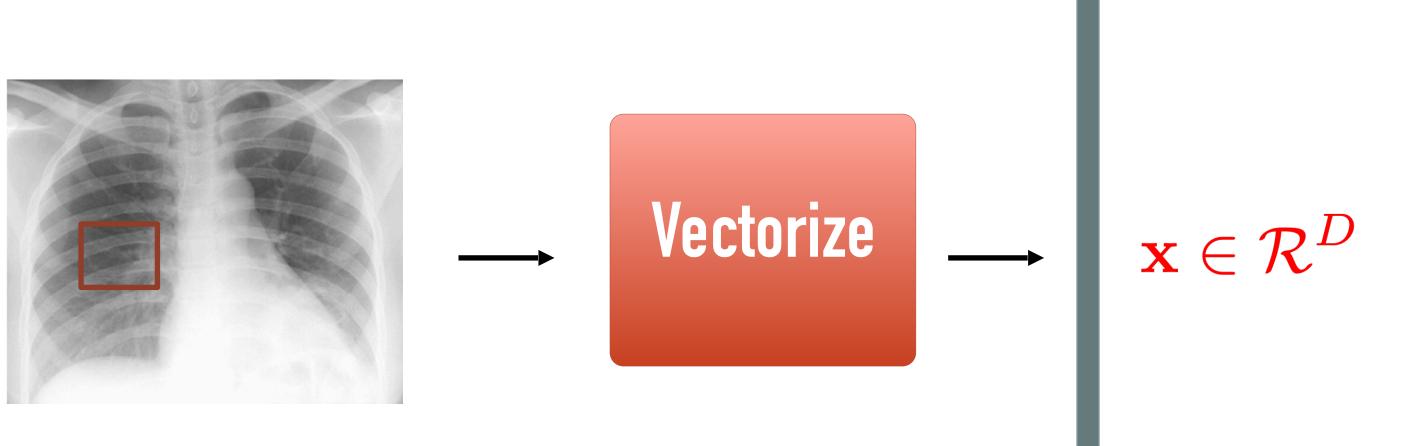
http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/



NEURAL NETWORK ARCHITECTURES

WHAT MAKES DNN SUBOPTIMAL FOR IMAGES

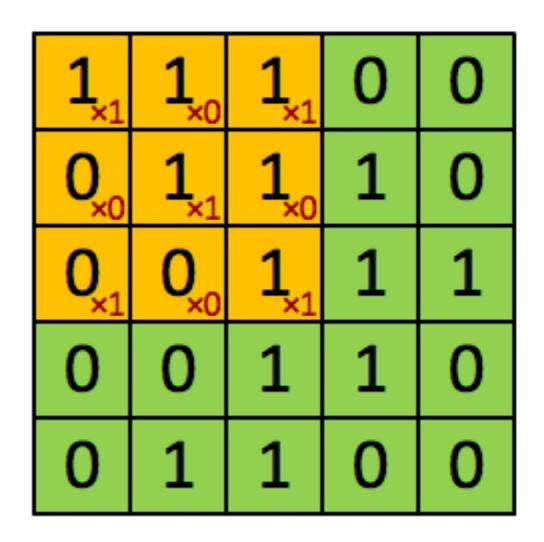
Vectorizing images



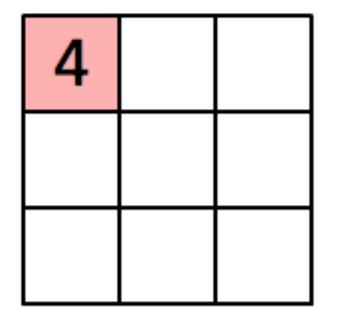
- ► Ignores the local correlations in the pixels
 - geometric structure is not exploited in images

CONVOLUTIONAL NEURAL NETWORKS

► 2-D convolution $A^{1}(i,j) = \sum_{m=0}^{M} \sum_{n=0}^{N} W^{1}(m,n)X(i+m,j+n)$



Image



Convolved Feature

CONVOLUTIONAL NEURAL NETWORKS

Reduce the size of images after convolution using pooling ► Keep local maximum

Х

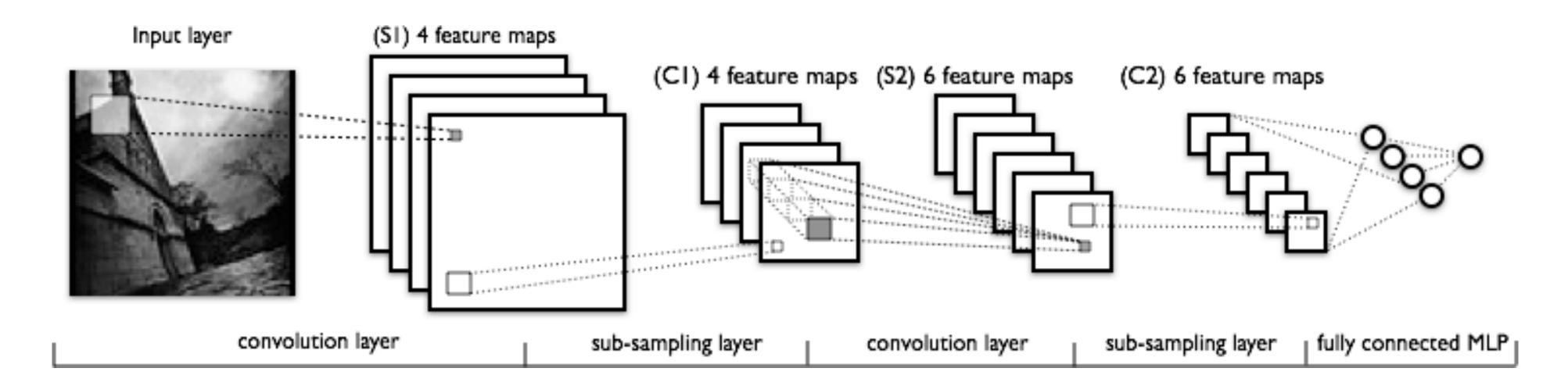
Single depth slice						
1	1	2	4			
5	6	7	8			
3	2	1	0			
1	2	3	4			

V

max pool with 2x2 filters and stride 2

6	8
3	4

CONVOLUTIONAL NEURAL NETWORKS



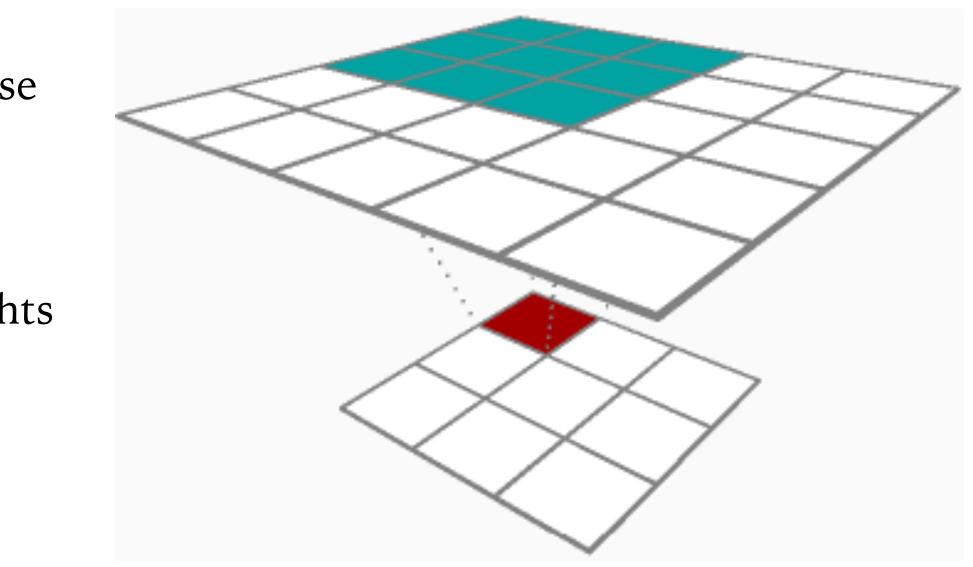
- operations.

Multiple levels of filtering and subsampling

• Feature maps are generated at every layer.

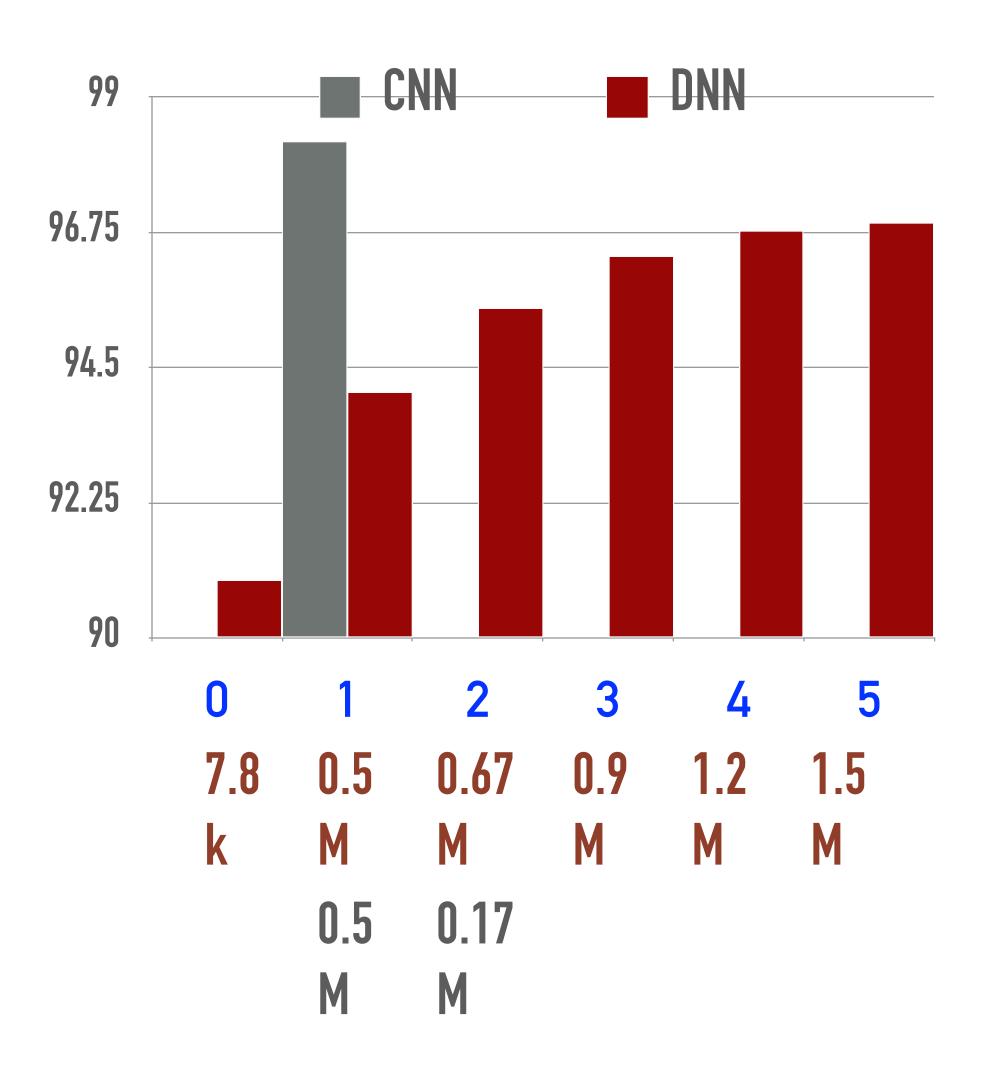
PROPERTIES OF CNN

- ► Reduce number of parameters
 - due to weight sharing.
 - Depth does not necessarily increase the parameter size.
- Preserving local structure
 - CNN filters operate on local weights
 - ► Deeper layers
 - capture wider input context.
- ► Training is more memory intensive
 - ► Accumulate gradients.



CNNS FOR MNIST

- Providing the right architecture
 - Improves the performance
 - also reduces the number of trainable
 parameters



UNDERSTANDING DEEP NETWORKS

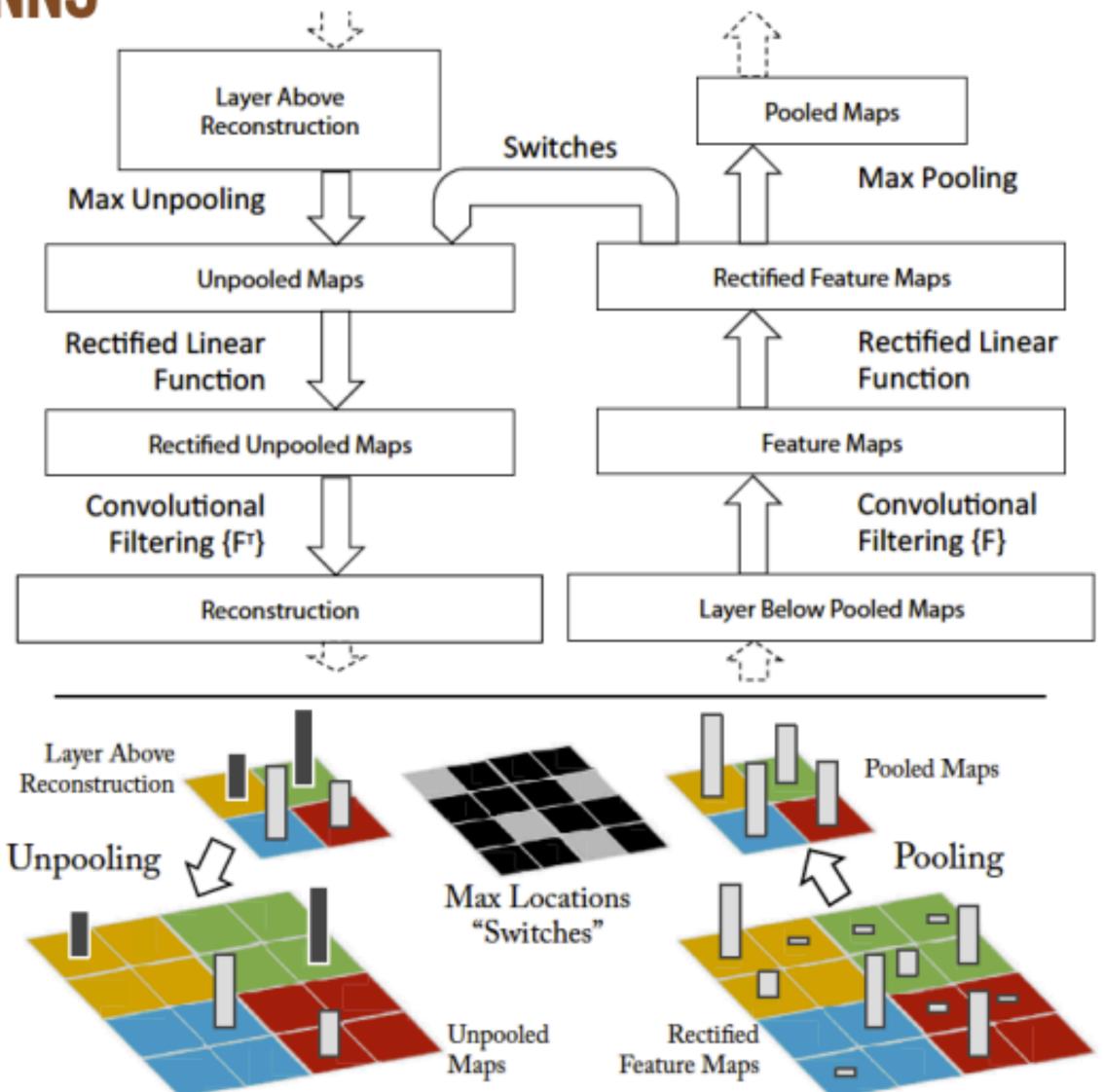
Visualizing and Understanding Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science, New York University, USA {zeiler,fergus}@cs.nyu.edu

UNDERSTANDING CNNS USING USING CNNS

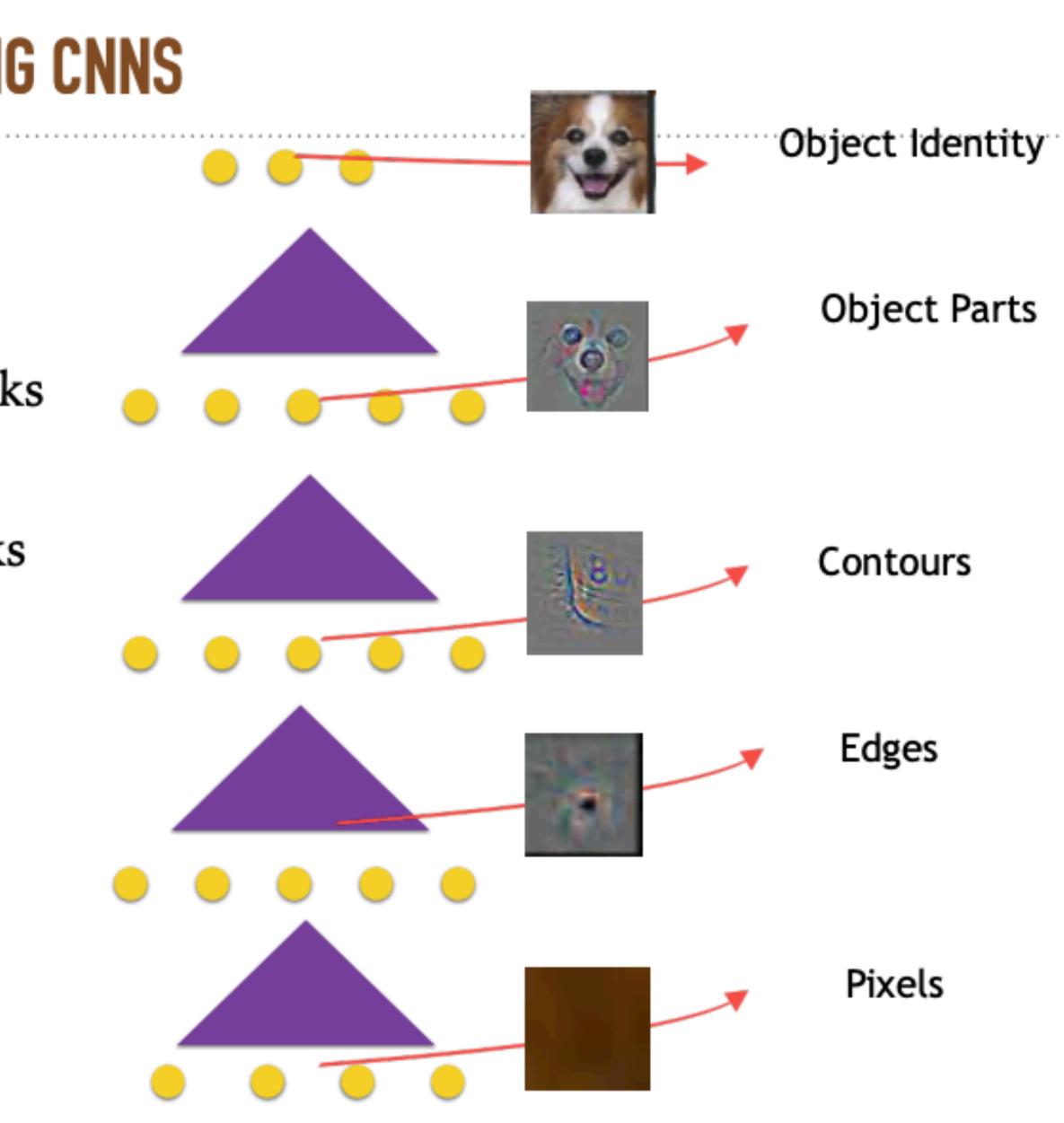
- Analyze a trained model
 - Take a model which is trained to perform object classification
 - Map the layer outputs back to the original space of images
 - Analyze the reconstruction outputs on a held out data



UNDERSTANDING CNNS USING USING CNNS

- ➤ Model learns a hierarchy
 - Earlier layers perform simpler tasks like edge detection.
 - Final layers perform complex tasks like object parts

Deep networks perform hierarchical data abstraction.



RECURRENT NEURAL NETWORKS

INTRODUCTION

- ► The standard DNN/CNN paradigms
 - (x,y) ordered pair of data vectors/images (x) and target (y)
- ► Moving to sequence data
 - (x(t),y(t)) where this could be sequence to sequence mapping task.
 - (x(t),y) where this could be a sequence to vector mapping task.
 - Input features / output targets are correlated in time.
 - Unlike standard models where each pair is independent.
 - ◆ Need to model dependencies in the sequence over time.

WHY DO NEED RECURRENT MODELS

> An interesting subset of this proble or have different indices $\boldsymbol{x}(t), \boldsymbol{y}$

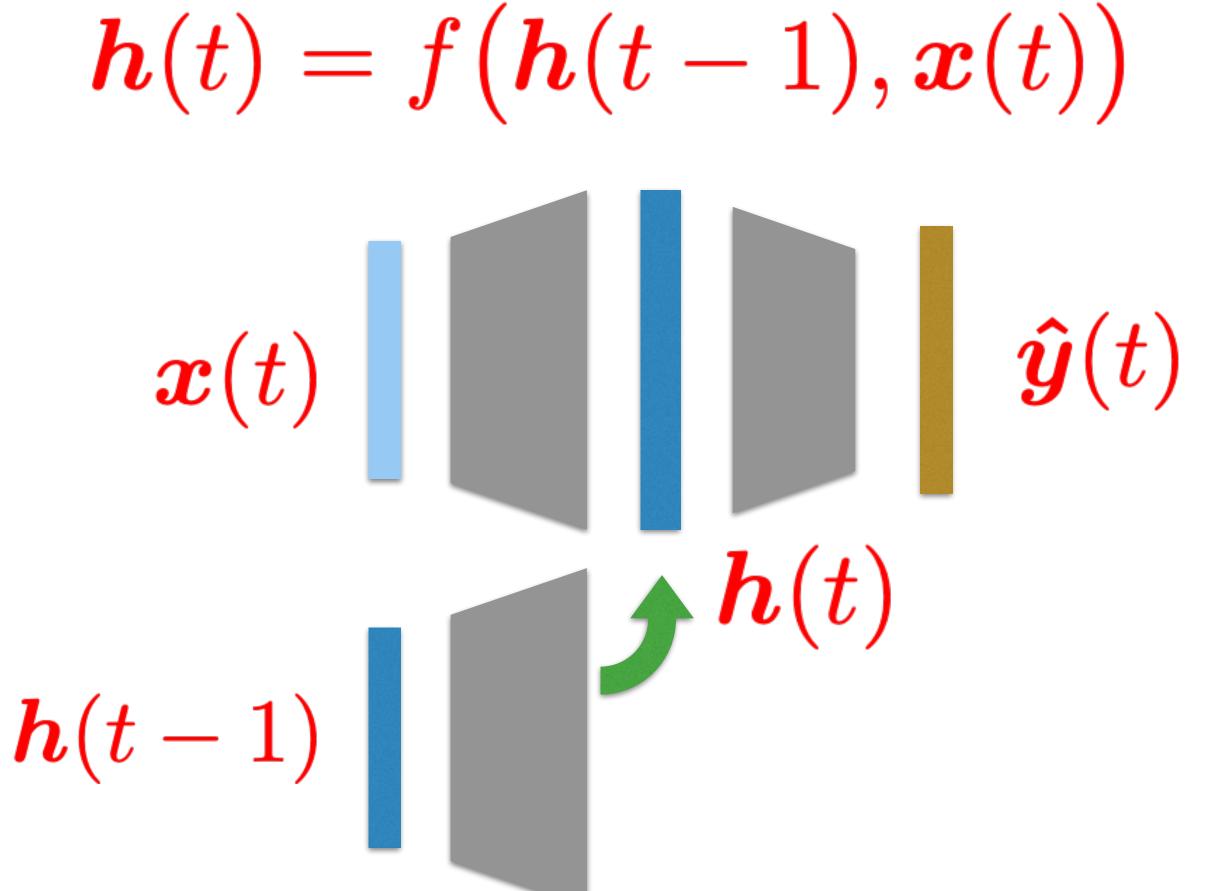
- ► Examples
 - Text sequences
 - Speech and audio
 - Video sequences
 - ✦ ECG/EEG data
 - ✦ Wearable sensor data

> An interesting subset of this problem is where the input alone is a time series

2S

FIRST ORDER RECURRENCE – HIDDEN LAYER

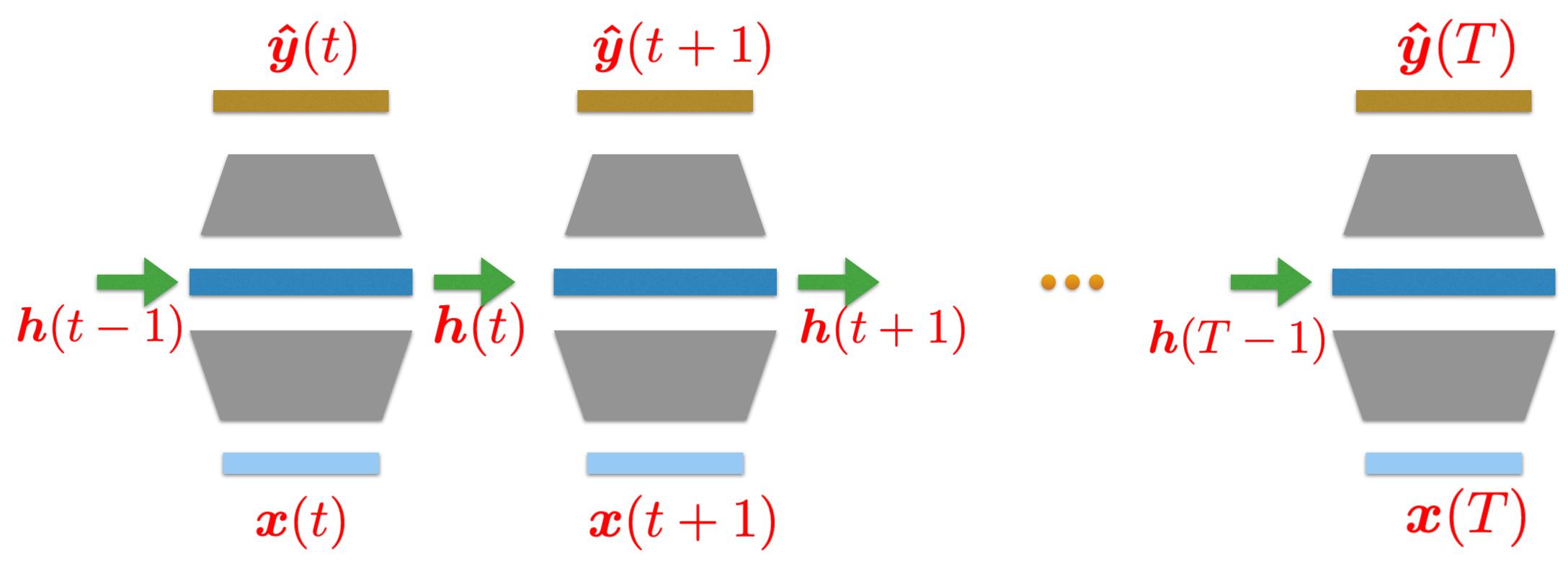
along with the input



Making the hidden layer a function of the previous outputs from the hidden layer

FIRST ORDER RECURRENCE – HIDDEN LAYER

with the input.



> Makes the hidden layer dependent of previous layer outputs in a recurring fashion.

> Making the hidden layer a function of the previous outputs from the hidden layer along

FIRST ORDER RECURRENCE – HIDDEN LAYER

with the input.

$$h(t) = f(h(t-1), x(t))$$
$$x(t)$$
$$\hat{y}(t)$$
$$h(t-1)$$

> Making the hidden layer a function of the previous outputs from the hidden layer along

Model Forward Pass - 1 hidden layer

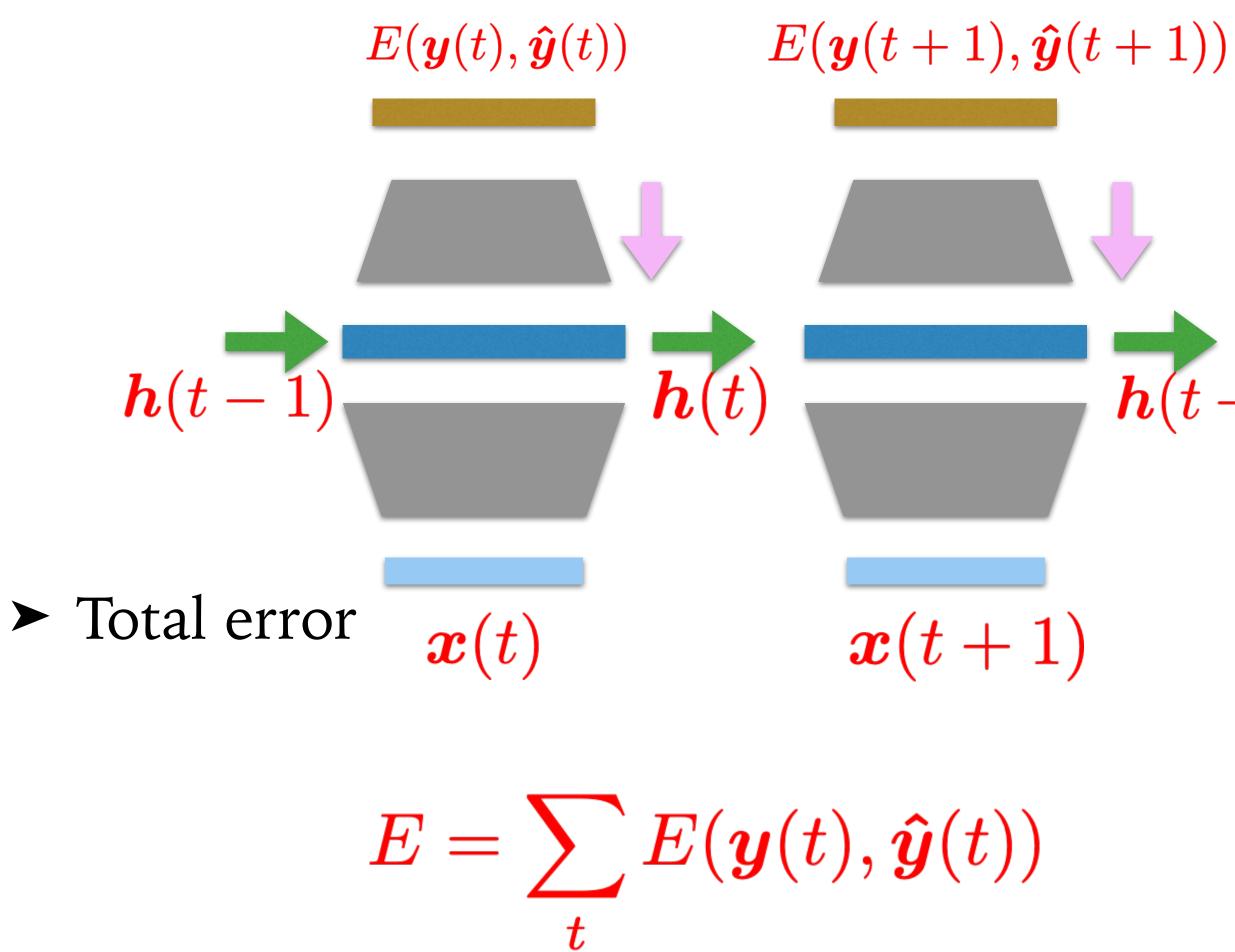
$$m{a}^{1}(t) = m{W}^{1}m{x}(t) + m{U}^{1}m{h}^{1}(t-1)$$

 $m{h}^{1}(t) = tanh(m{a}^{1}(t))$
 $m{a}^{2}(t) = m{W}^{2}m{h}^{1}(t)$
 $m{\hat{y}}(t) = S(m{a}^{2}(t))$

> Makes the hidden layer dependent of previous layer outputs in a recurring fashion.

ERROR BACKPROPAGATION

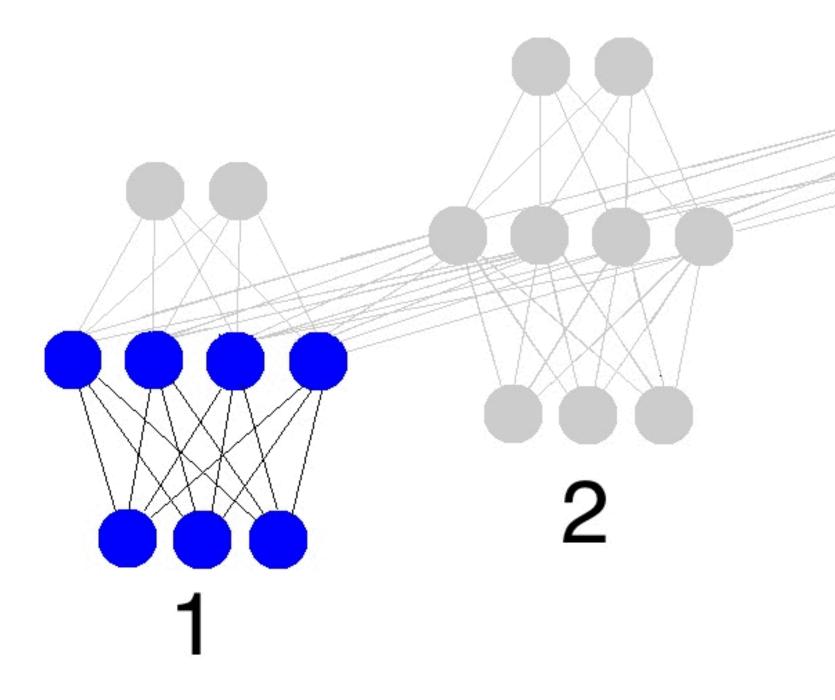
Error functions are computed at every time-instant

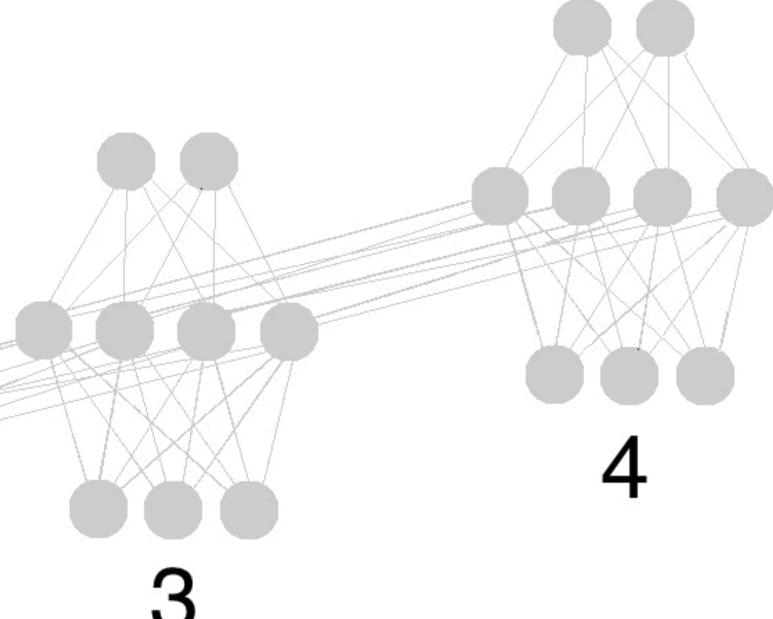


 $E(\boldsymbol{y}(T), \hat{\boldsymbol{y}}(T))$ h(t+1) h(T-1) $\boldsymbol{x}(T)$

.

BACK PROPAGATION THROUGH TIME

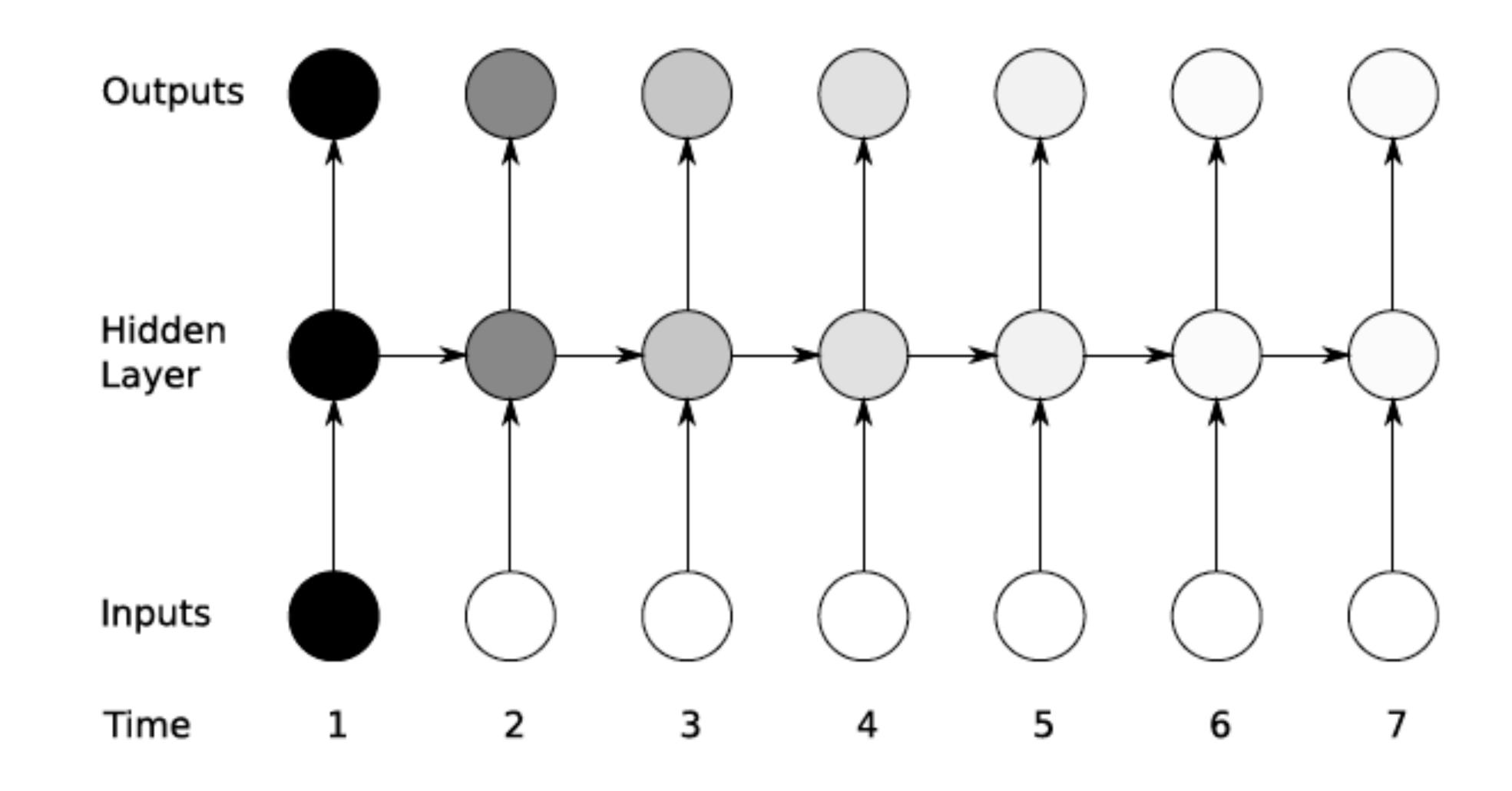




MakeAGIF.com

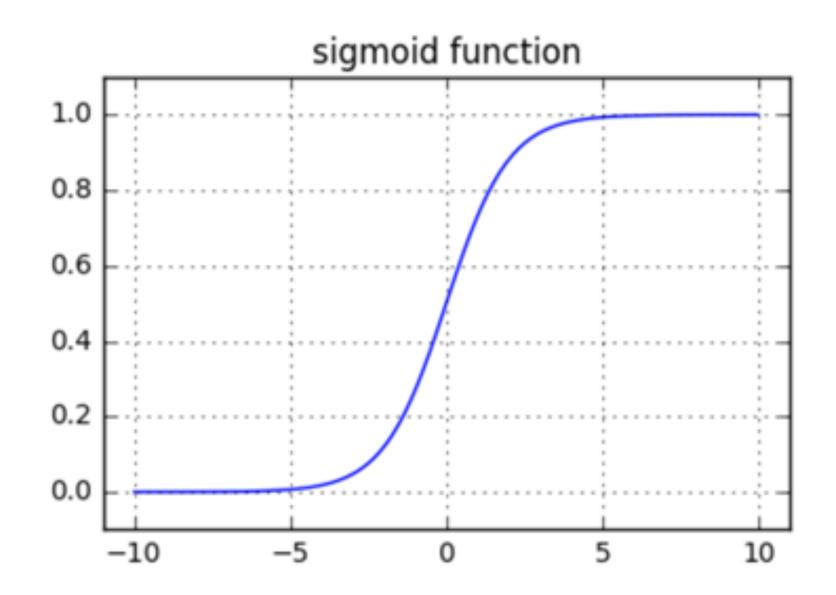
LONG-TERM DEPENDENCY ISSUES

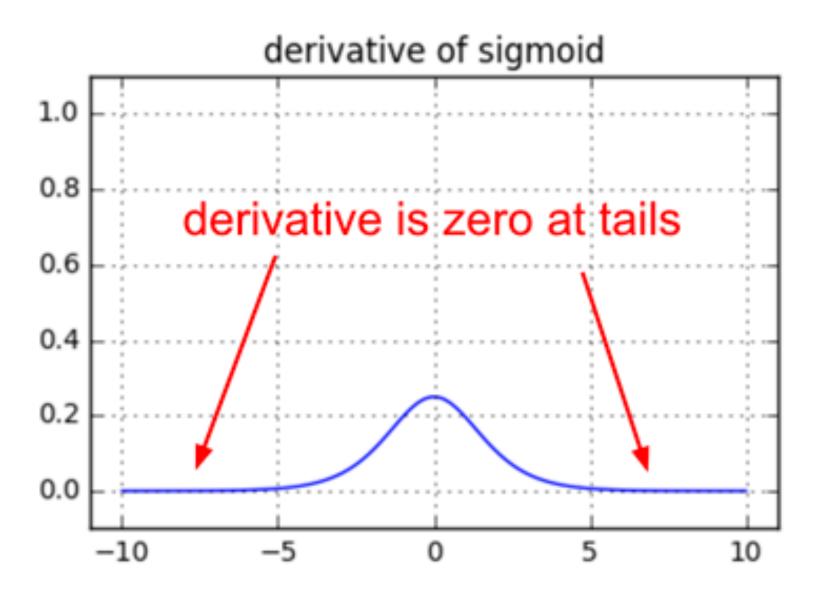
. . .



LONG-TERM DEPENDENCY ISSUES

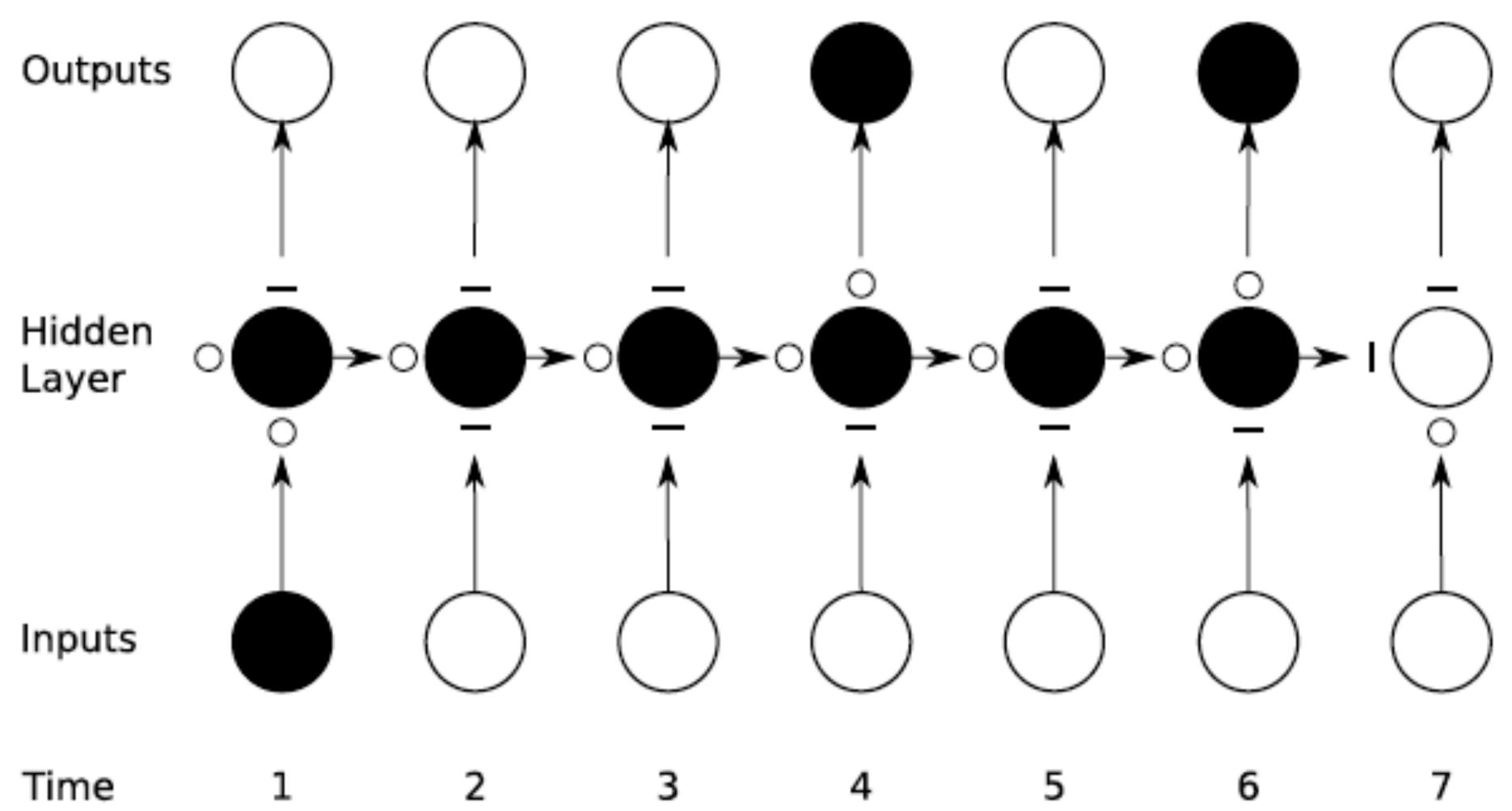
Gradients tend to vanish or explode





.

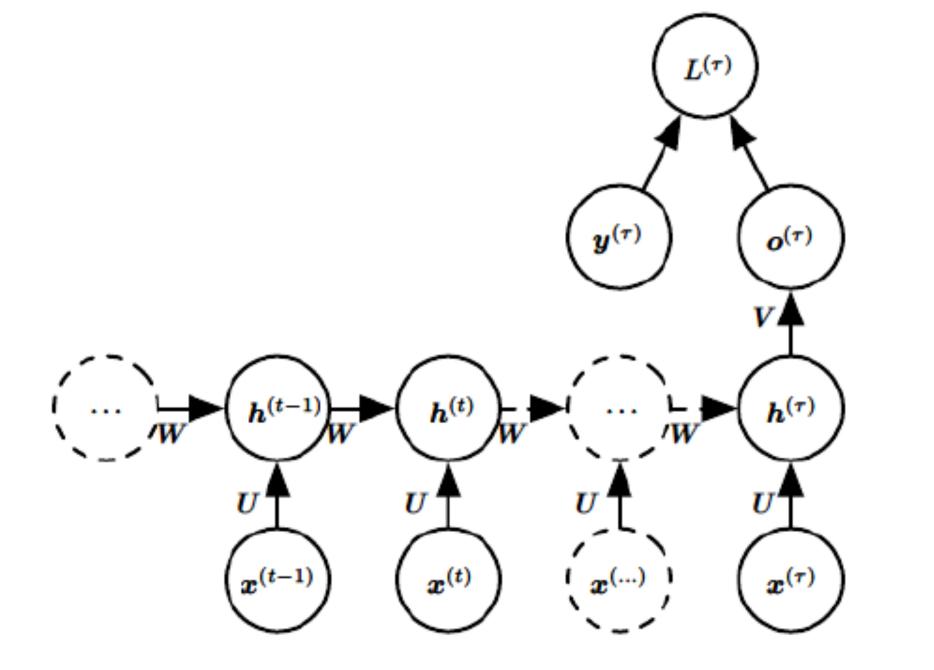
LONG SHORT TERM MEMORY (LSTM) IDEA



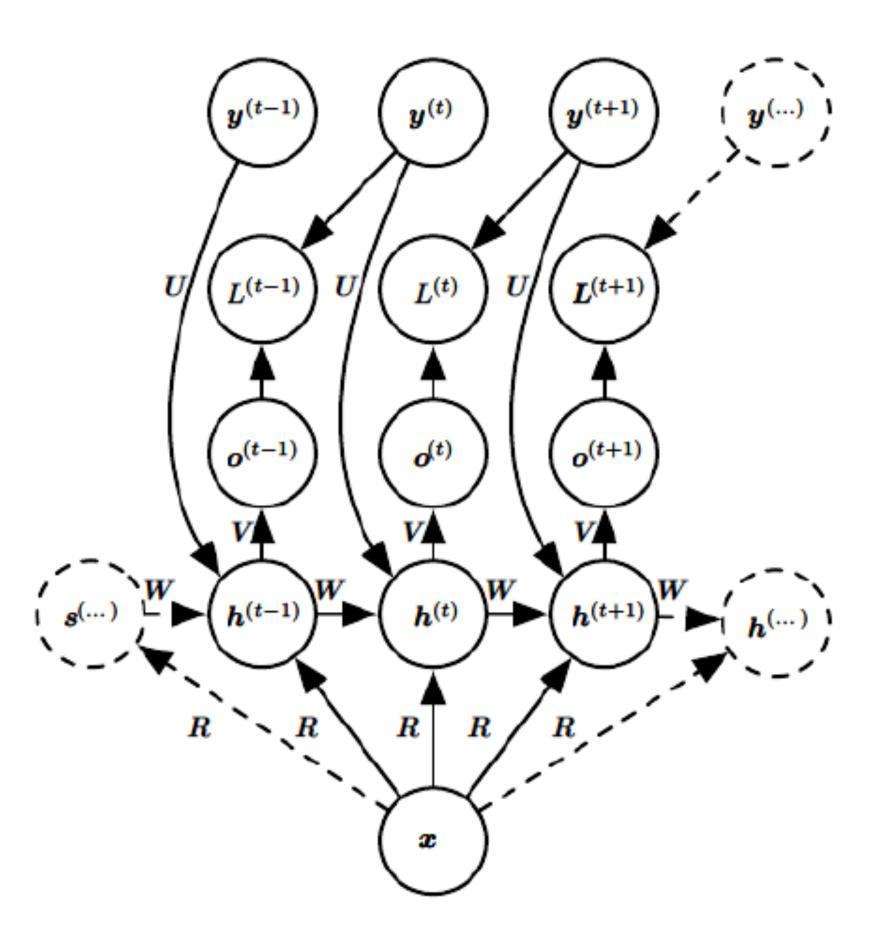
MODELING QUESTIONS

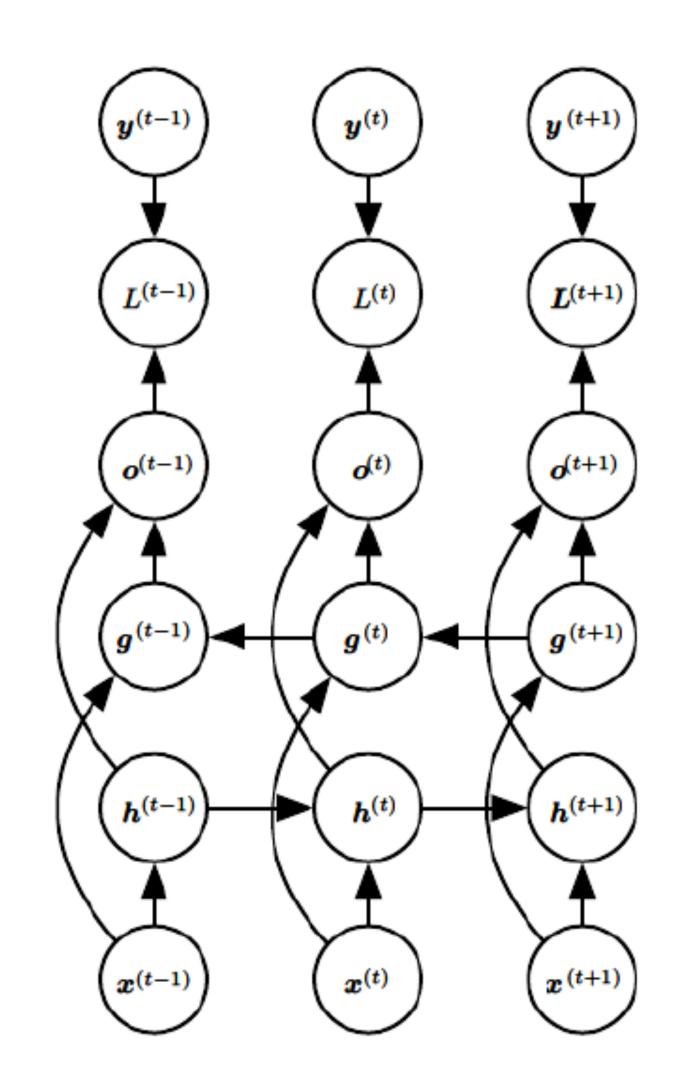
- ► How can we make adaptable gates with neural networks
 - * How can we make gates dependent on the data itself.
 - + Gates can be implemented as neural layers with sigmoidal outputs ?
 - Sigmoids can approximate 0-1 functions
 - Modulate the gate output with inputs, hidden layer outputs or outputs

.

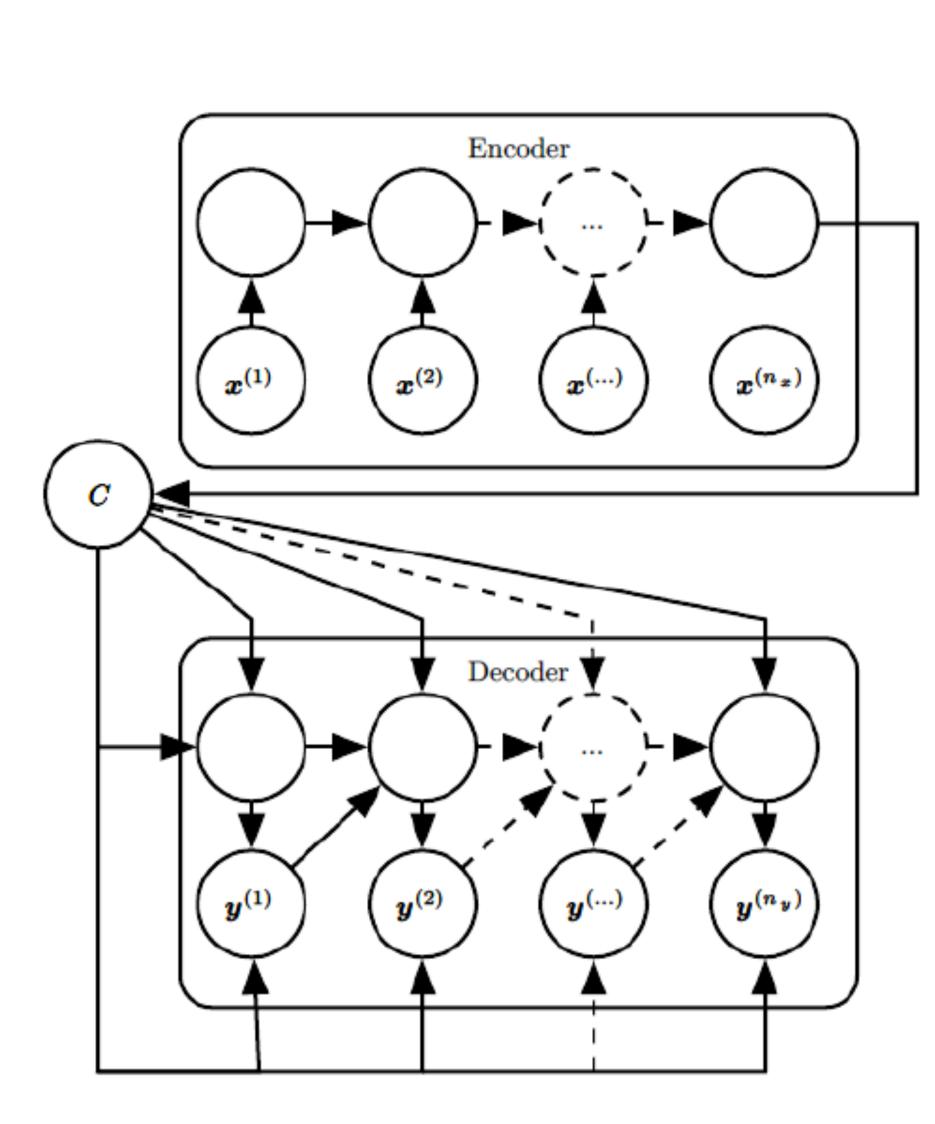


Multiple Input Single Output



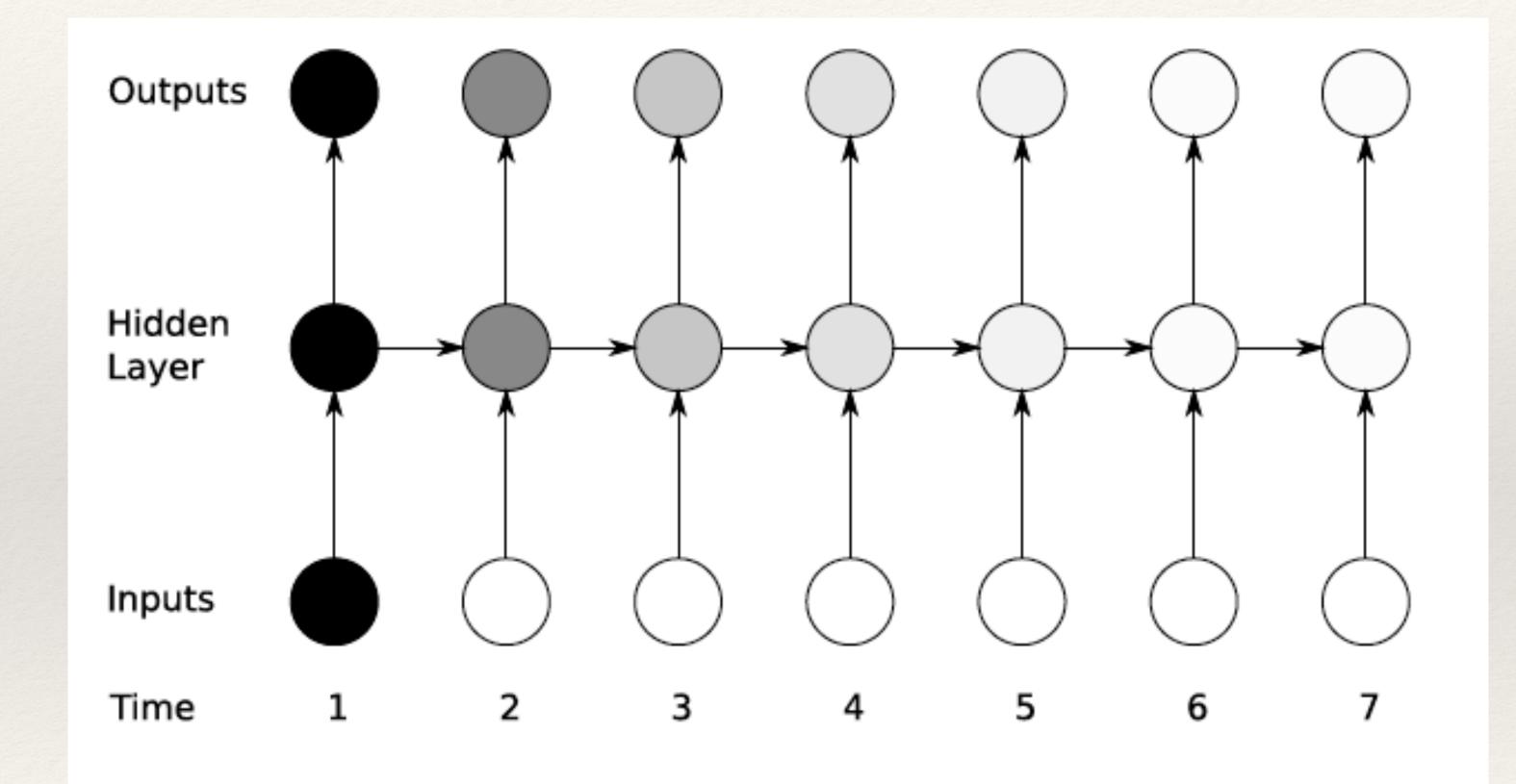


Bi-directional Networks

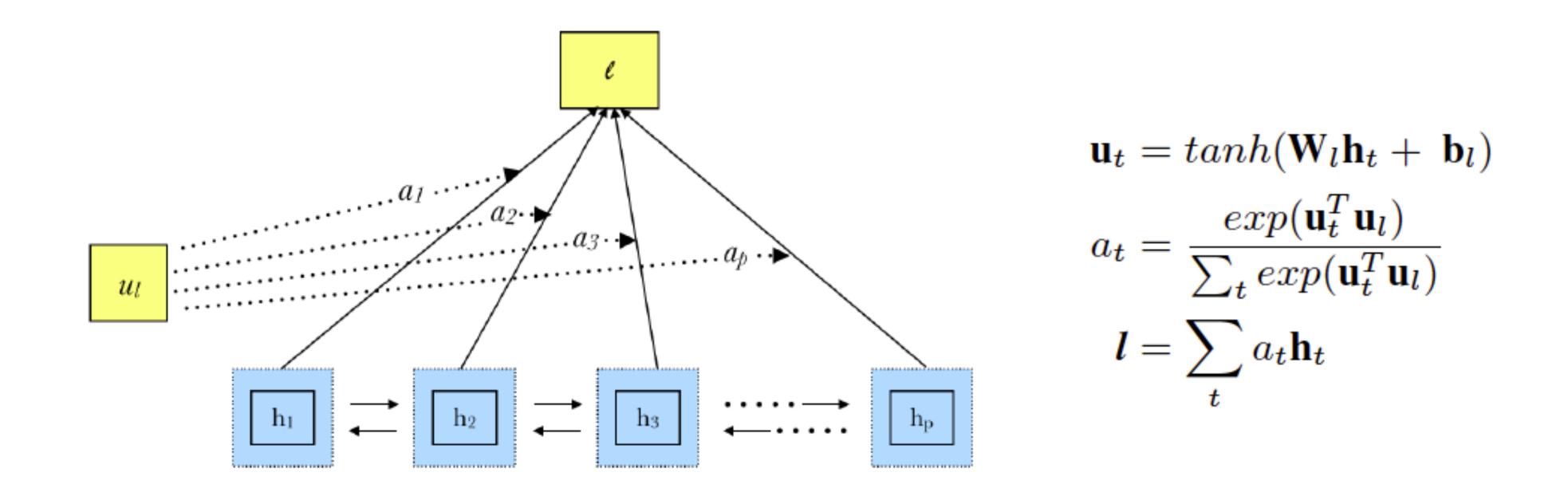


Sequence to Sequence Mapping Networks

Long-term Dependency Issues



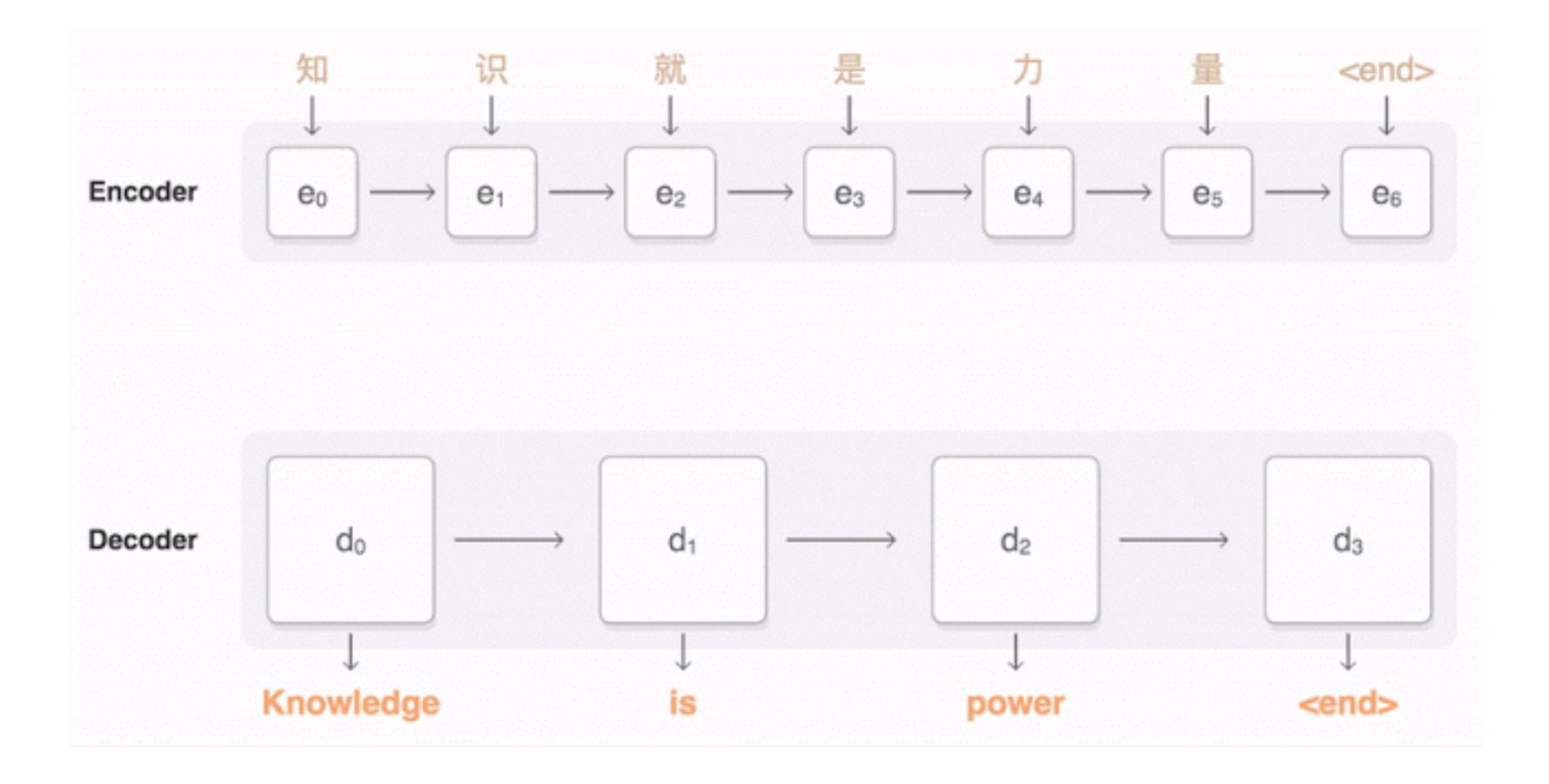
Attention in LSTM Networks



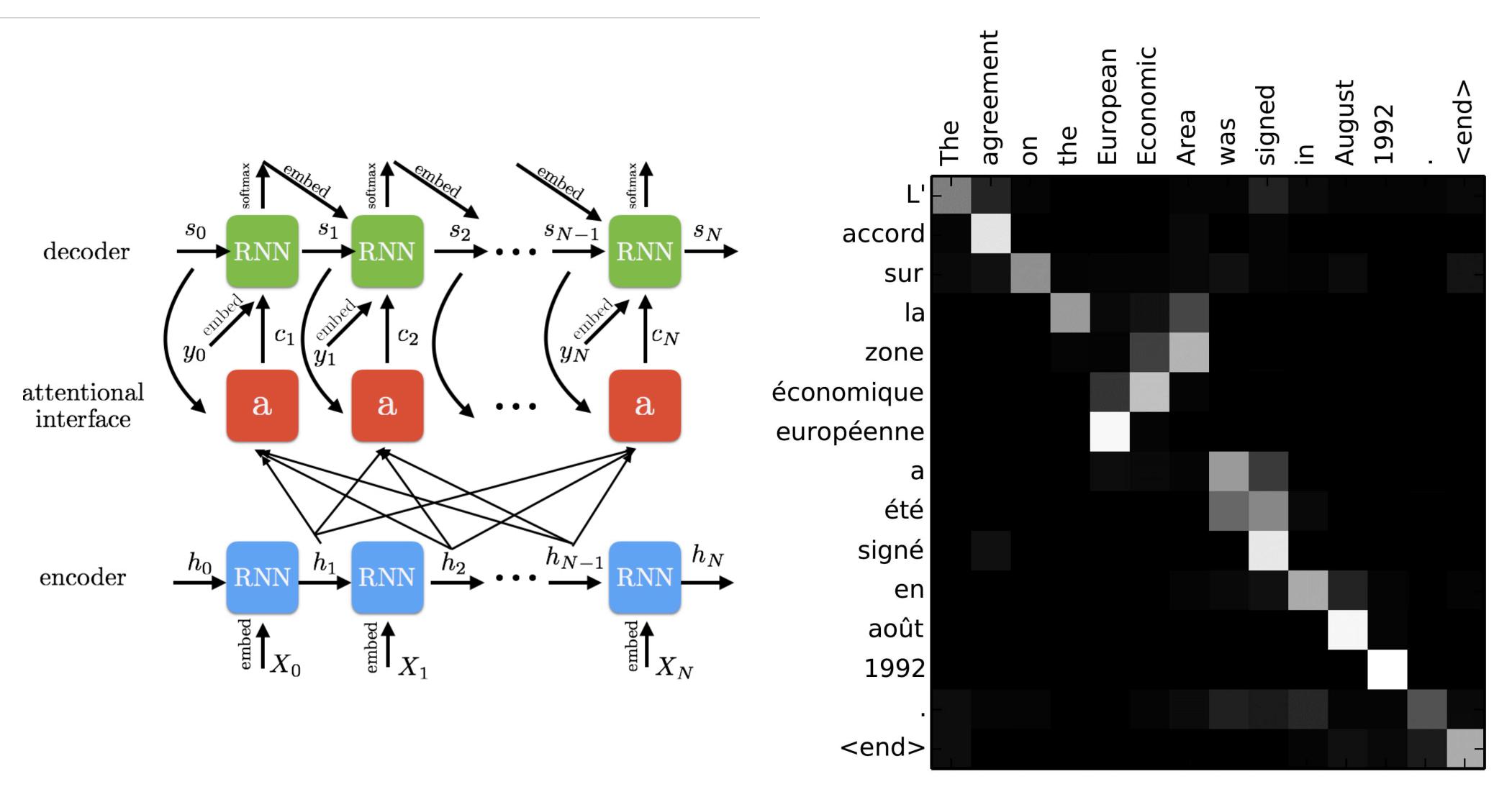
- * Attentions allows a mechanism to add relevance
 - than the rest for the task at hand.

* Certain regions of the audio have more importance

Encoder - Decoder Networks with Attention



Self-Attention Models

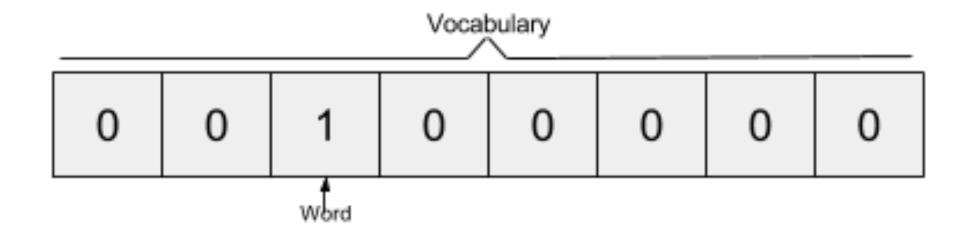


Natural language processing - representations of text

Converting text into fixed representations in a vector space.

Using one-hot vectors is really high dimensional.

* Need a concise word representations that embeds semantics.



word2vec models as text representations

Source Text

The quick brown	fox jumps over	1
-----------------	----------------	---

The	quick	brown	fox	jumps	over	1
-----	-------	-------	-----	-------	------	---

The	quick	brown	fox	jumps	over	
-----	-------	-------	-----	-------	------	--

The quick brown	fox	jumps	over	
-----------------	-----	-------	------	--

Training Samples

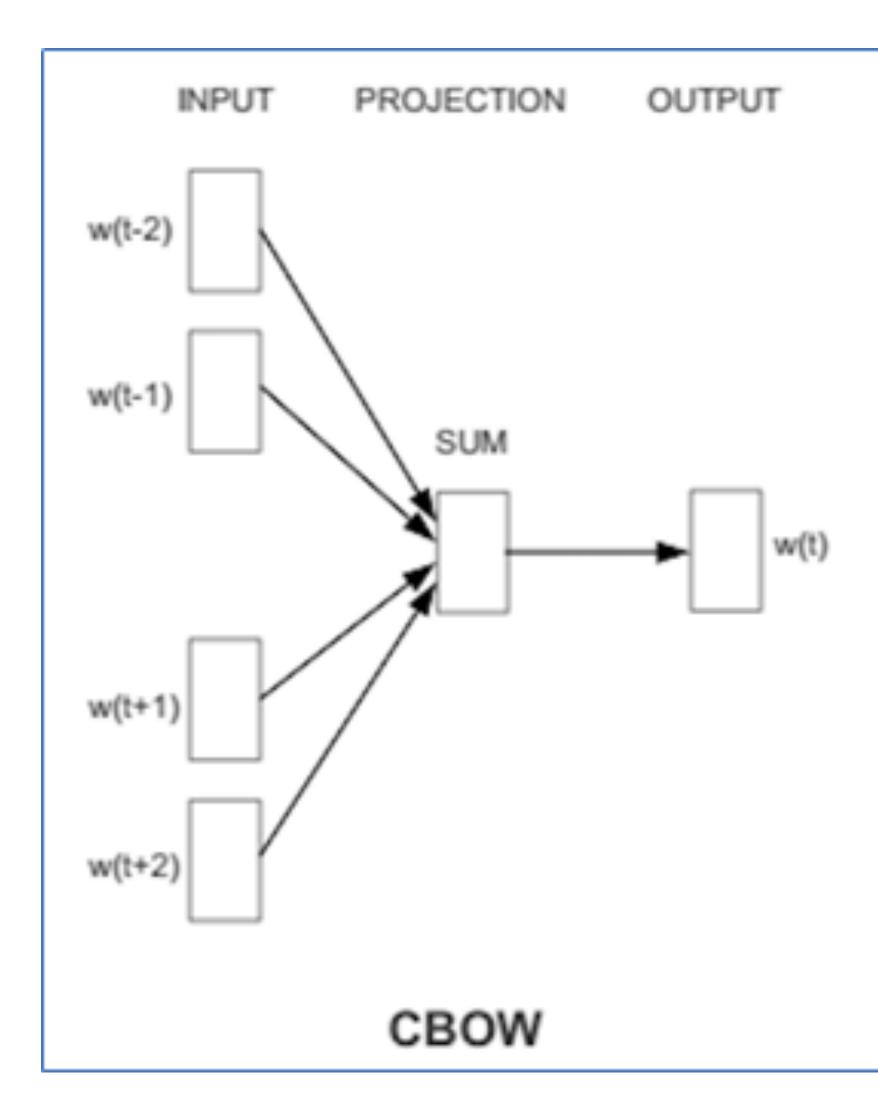
- the lazy dog. \longrightarrow (quick, the) (quick, brown) (quick, fox)
- the lazy dog. ⇒
- (brown, the) (brown, quick) (brown, fox) (brown, jumps)

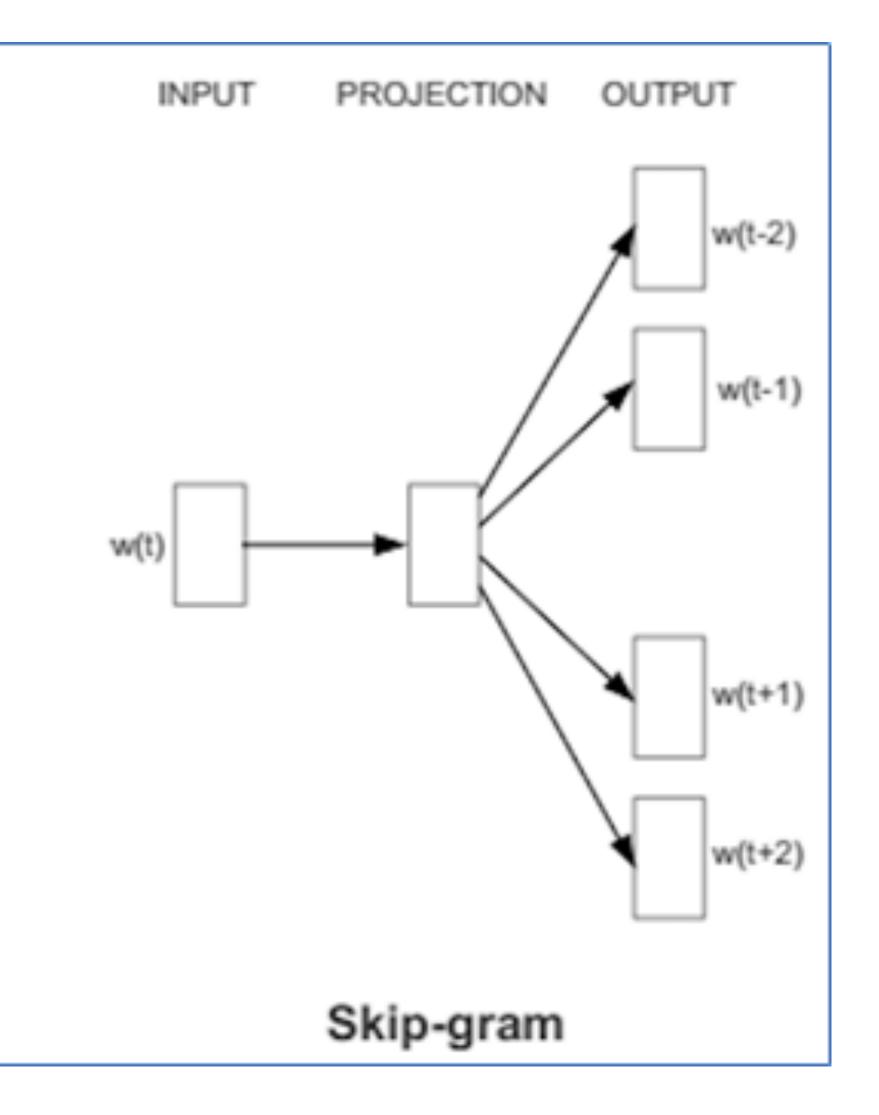
the lazy dog. 👄

(fox, quick) (fox, brown) (fox, jumps) (fox, over)

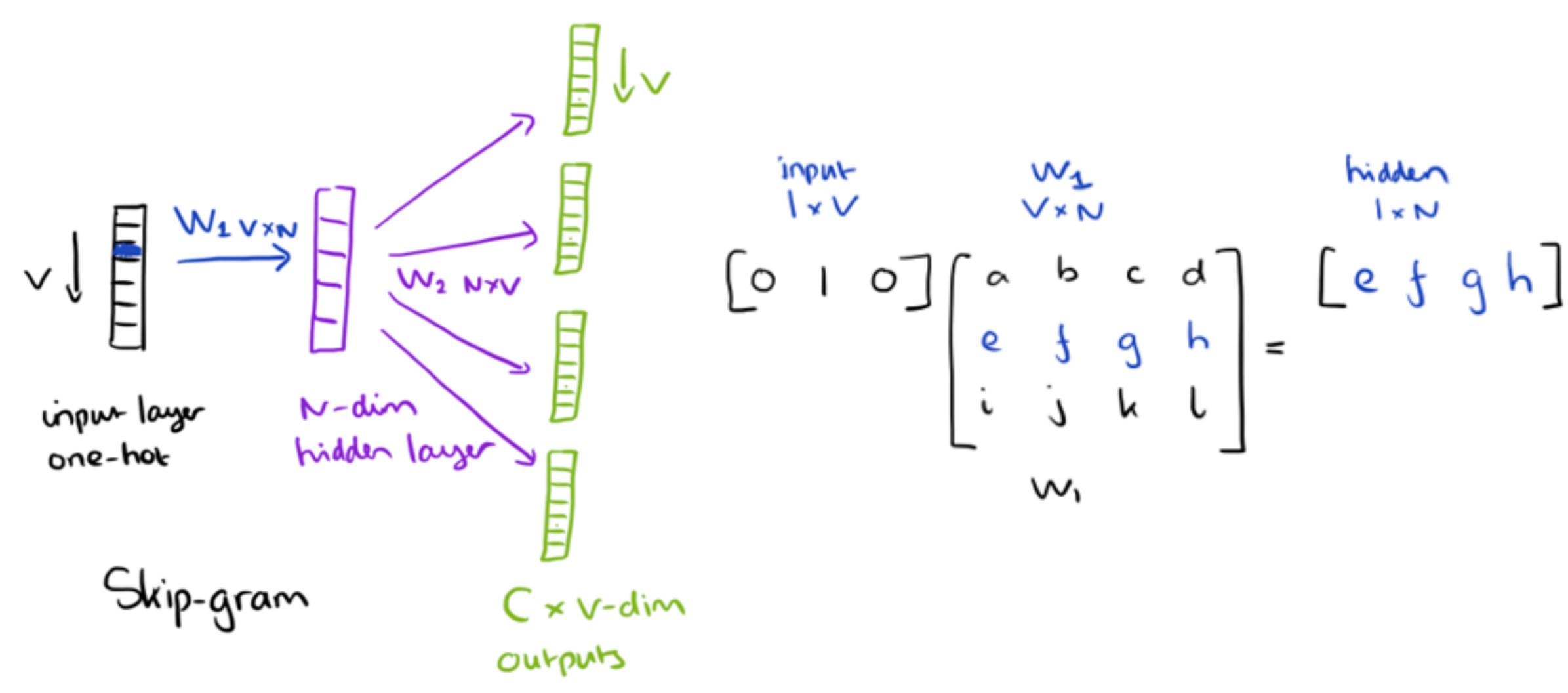
word2vec representations

word2vec models as text representations

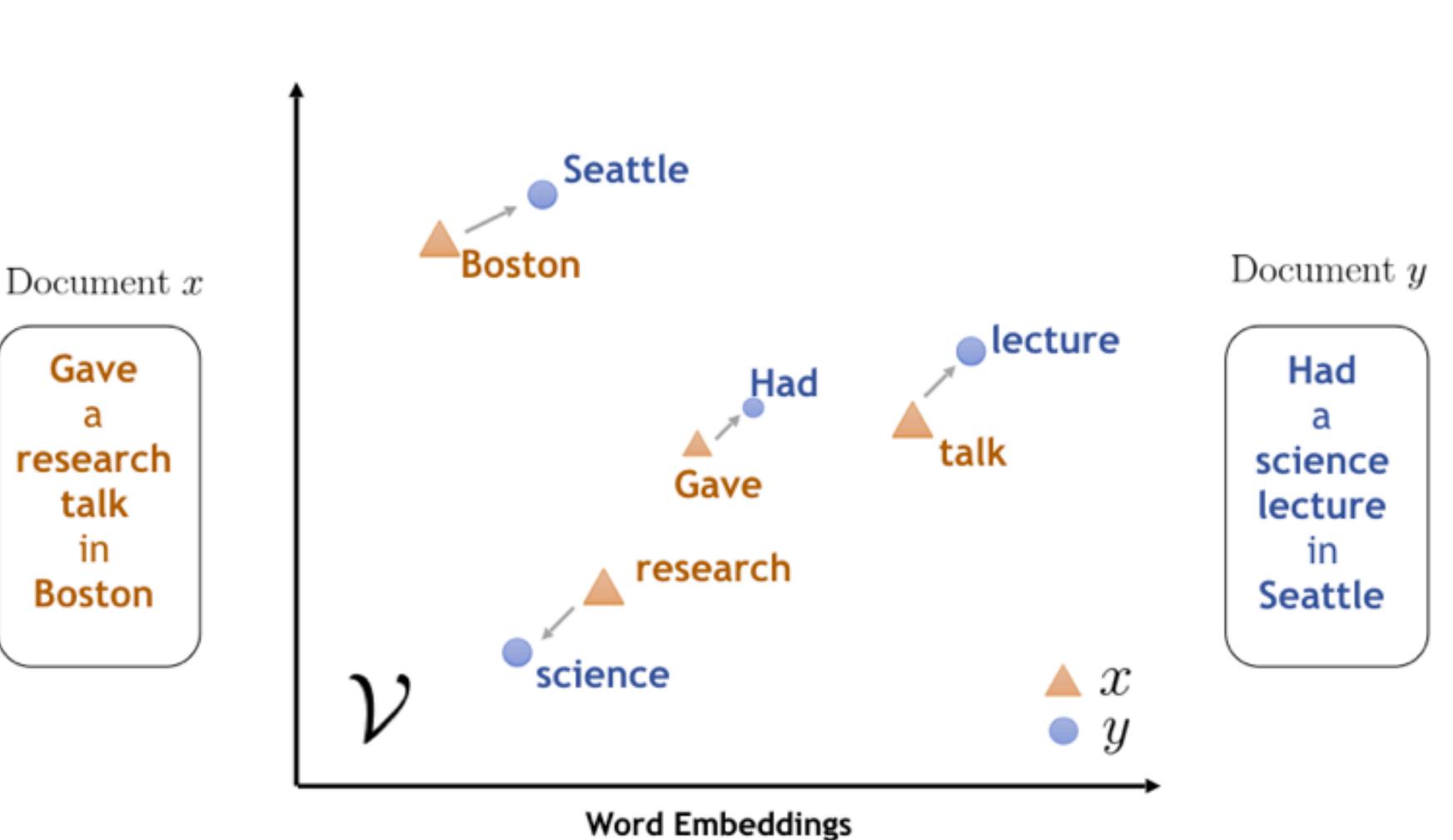




word2vec representations

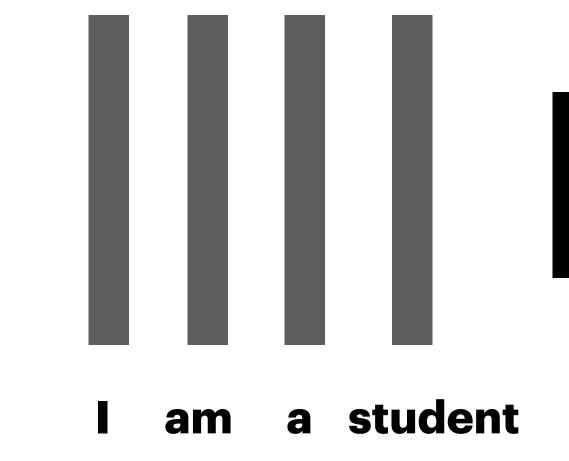


word2vec visualization



Transformers

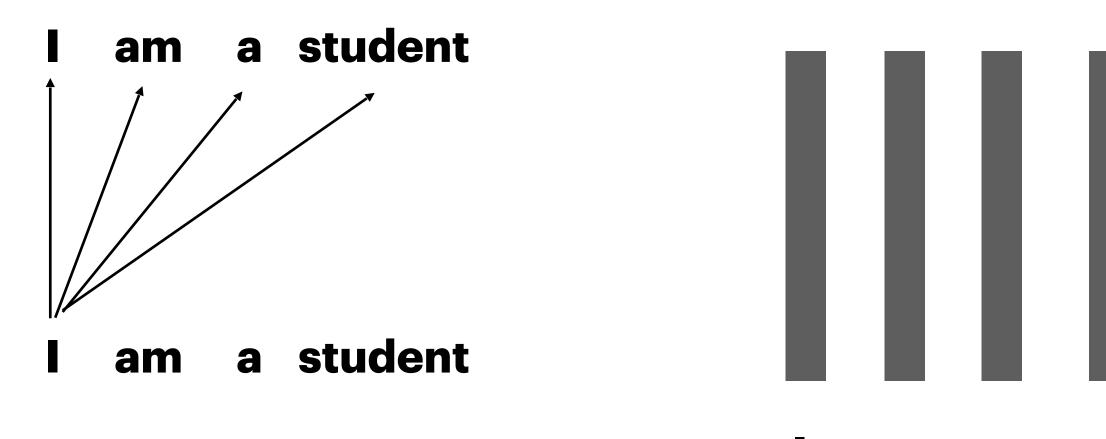
• Embedding context in sequence inputs



Word Embeddings

I am a student

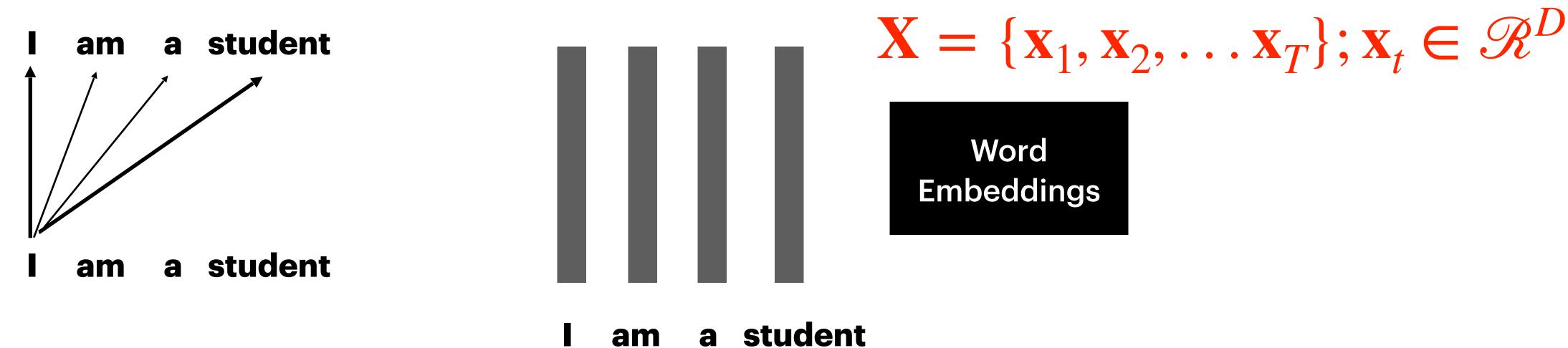
• Embedding context in sequence inputs *Let us take an example



Word Embeddings

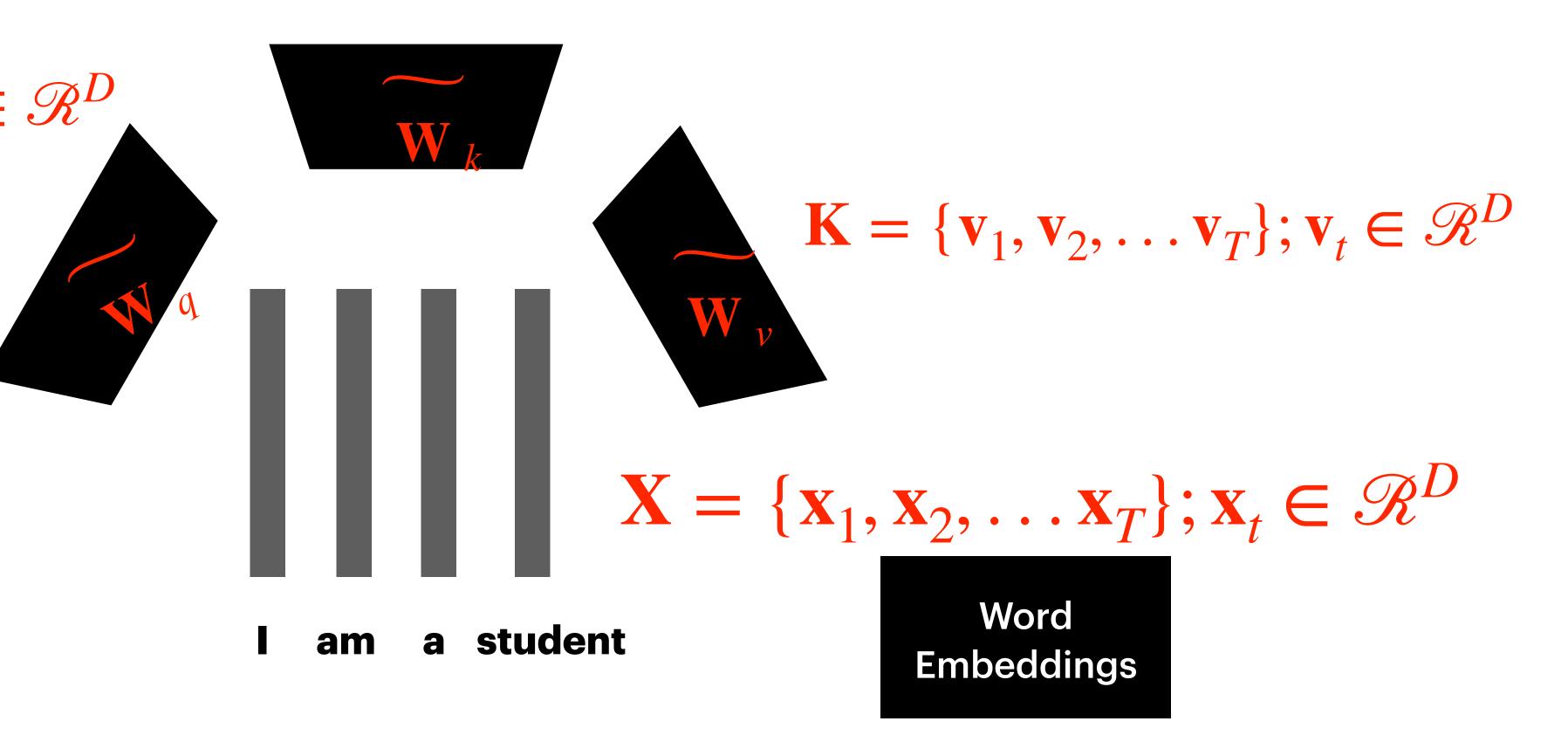
I am a student

• Embedding context in sequence inputs *Let us take an example *Using word embeddings as the input representation

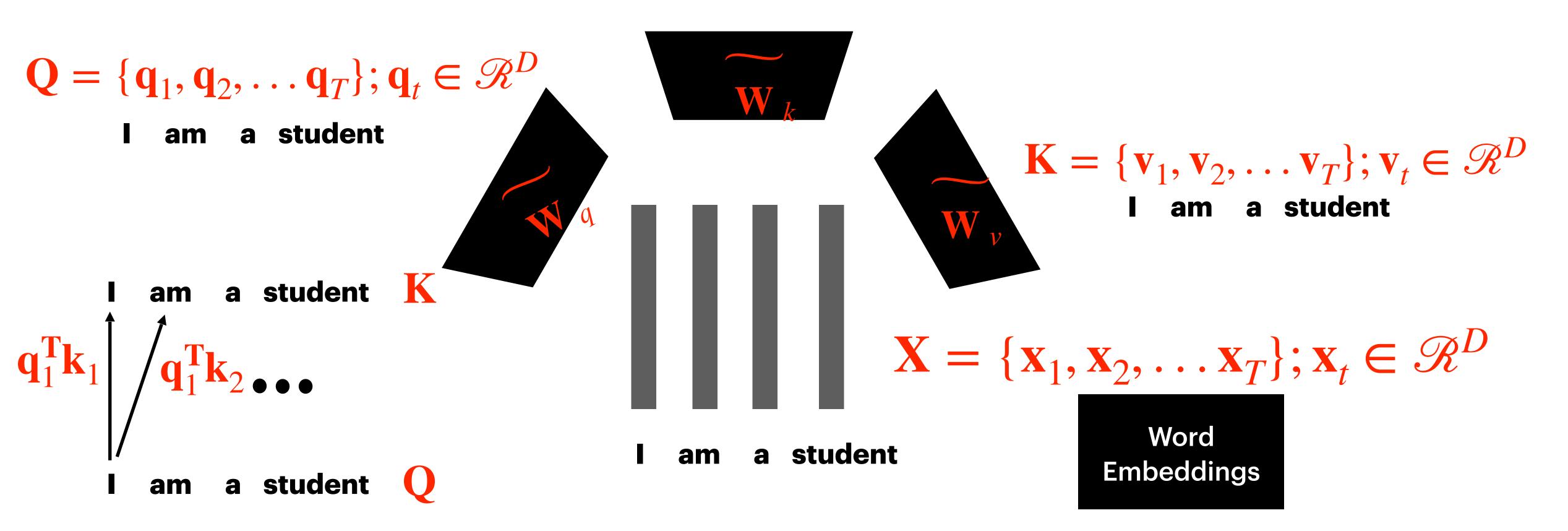


$\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

$\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{x}_T\}; \mathbf{q}_t \in \mathscr{R}^D$



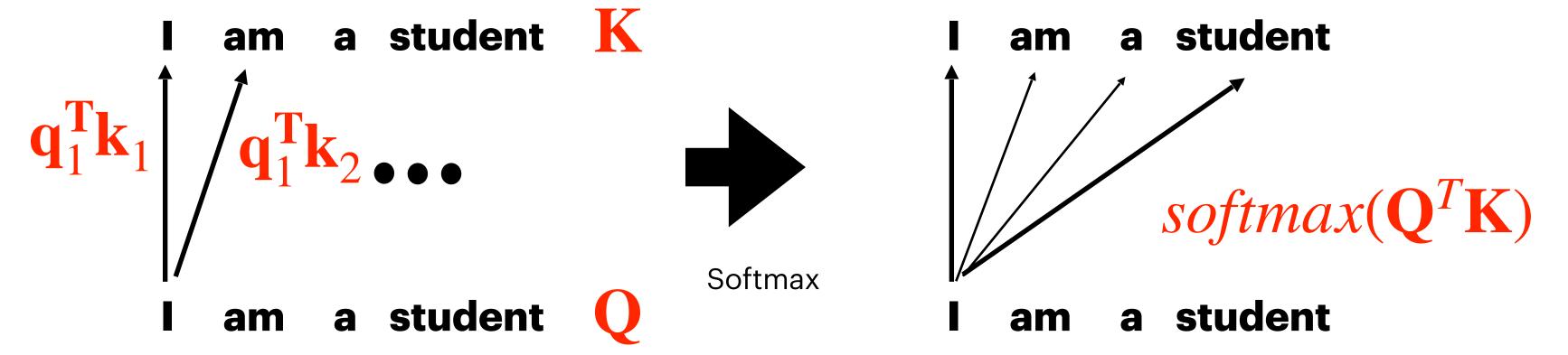
am



a student $\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

am

a student am $\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_T\}; \mathbf{q}_t \in \mathscr{R}^D$



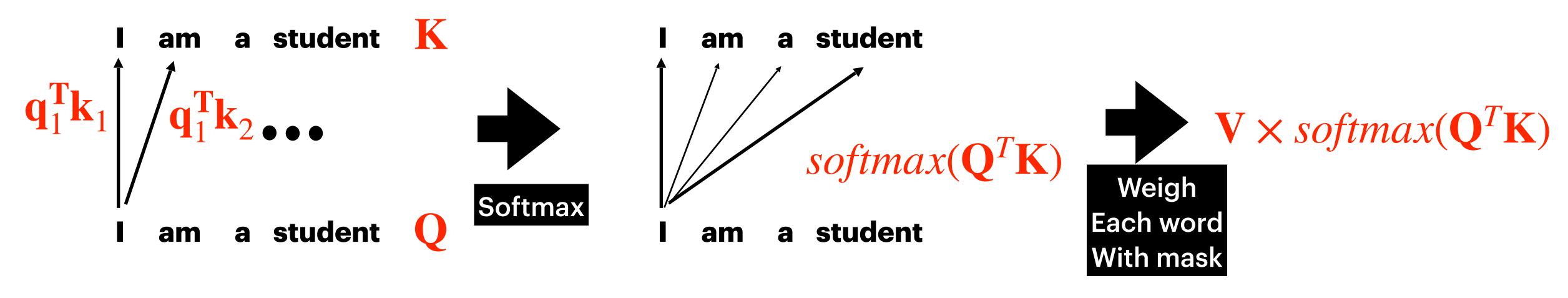
Pics taken from : https://jalammar.github.io/illustrated-transformer/

a student $\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

$\mathbf{K} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_T\}; \mathbf{v}_t \in \mathscr{R}^D$ a student am

am

a student am $\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_T\}; \mathbf{q}_t \in \mathscr{R}^D$



Pics taken from : https://jalammar.github.io/illustrated-transformer/

a student $\mathbf{K} = \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_T\}; \mathbf{k}_t \in \mathscr{R}^D$

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

