MACHINE LEARNING FOR SIGNAL PROCESSING 6-1-2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

> Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science. viveka.sg@gmail.com varadar2000@gmail.com

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/

OVERVIEW

- What are the typical real-world data/signals that we deal with *
 - How do we sense these signals
 - How do we represent them in digital form
- What is learning
 - Different approaches for learning from data
- Roadmap of the course
- Logistics of the course

REAL WORLD SIGNALS

- Signal in general is a function f : X —> V *
- Real World Signals *
 - which we see everyday everywhere
 - ✓ Text, Speech, Image, Videos...
 - \checkmark
 - Belonging to/generated by certain category of events.

DNA sequence, financial data, weather parameters, neural spike train...

REAL WORLD SIGNALS - TEXT

- ✤ Text data
 - ✓ How do we sense it
 - Represented as a sequence of UNICODE symbols
 - [Unicode] an international encoding standard for use with different languages and scripts, by which each letter, digit, or symbol is assigned a unique numeric value that applies across different platforms and programs.
 - **UTF-8** a standard that is most commonly used for encoding text
 - → First 128 symbols are ASCII characters
 - Can encode more than 1M characters with variable width.

REAL WORLD SIGNALS - TEXT

Text data

Discrete sequence of items

In the last 29 years, sir has never ever said 'well played' to me because he thought I would get complacent and I would stop working hard.

Items - [In] [the] [last] [29] [years]

Some items carry more **importance** than others.

Speech data

Phonetic units - underlying hidden variables.

Speech data *

Pic - https://nandasiddhardha.medium.com/embracing-the-magic-of-data-conversion-from-analog-to-digital-88cf20bcd031

https://ccci.am/language-services/data-collection-services/audio-and-speech-data-collection/

NP.

Images

Basic unit is a pixel *

REAL WORLD SIGNALS - VIDEO

- Image data sensing *
 - Camera capture
 - Represented as 2-D grid of brightness values (8 bit/ 16 bit)
 - Can have color channels
 - Example Data structure of 3x256x256
- Video data
 - Series of images sampled at a frame rate (e.g. 30Hz) \checkmark
 - Can have an additional audio channel (sampled at higher rate).

PATTERNS IN REAL WORLD SIGNALS

- Patterns in real world signals
 - Caused by various generation processes in the real-world signals.
 - ✓ Hidden from the observation.
 - Value patterns and geometric patterns.
 - May be hierarchical in nature.

Manifested as pure patterns or transformed/distorted versions.

WHAT IS LEARNING

- Learning *
 - ✓ Process of describing or uncovering the pattern.
 - Understanding the physical process of generation.
 - Generalization for prediction, classification, decision making.
 - Using the data to learn the underlying pattern.
- Humans are fundamentally trained to learn and recognize patterns.
 - In some cases, learning is motivated by human abilities

WHAT IS LEARNING

Object Recognition

Facial Identification

Topic Summarization

The Karnataka government is planning to start an aviation school to help students from lower economic and rural backgrounds become pilots.

MACHINE LEARNING

- Machine Learning
 - Automatic discovery of patterns.
 - ✓ Motivated by human capabilities to process real world signals.
 - Mimicking/Extending/Replacing human functions.
 - Branch of artificial intelligence.
 - Classification, Regression and Generation.

MACHINE LEARNING - EXAMPLES

Domain Identification - Blog v/s Chat?

"I tried these Butterscotch Muffins today and they turned out so good. I had half the pack of butterscotch chips that I bought long back so wanted to use it up."

> "Hey, it's Geoff from yesterday. How's it going?Hi there. Don't wanna bother you long, but you saw this video?"

Did a Human or Machine write this?

"A shallow magnitude 4.7 earthquake was reported Monday morning five miles from Westwood, California, according to the U.S. Geological Survey. The temblor occurred at 6:25 AM, Pacific time at a depth of 5.0 miles."

https://www.nytimes.com/2020/07/29/opinion/gpt-3-ai-automation.html

"Kitty couldn't fall asleep for a long time. Her nerves were strained as two tight strings, and even a glass of hot wine, that Vronsky made her drink, did not help her. Lying in bed she kept going over and over that monstrous scene at the meadow."

MACHINE LEARNING - EXAMPLES

https://www.nytimes.com/interactive/2024/12/27/technology/artificial-intelligence-generative-fill-photoshop-openai.html

LEVP.

MACHINE LEARNING - EXAMPLES

https://www.nytimes.com/interactive/2024/12/27/technology/artificial-intelligence-generative-fill-photoshop-openai.html LEAP

Speech Recognition

Sound Synthesis

MACHINE LEARNING VIDEO TO AUDIO GENERATION

MACHINE LEARNING

 Traditional approaches to Machine Learning Rule and heuristic based methodologies
Using small amounts of data. * Recently, most problems are addressed as statistical pattern

recognition problem with big data.

OVERVIEW

- What are the typical real-world data/signals that we deal with
 - How do we sense these signals
 - How do we represent them in digital form
- What is learning *
 - Different approaches for learning from data
- Roadmap of the course
- Logistics of the course

TYPES OF LEARNING

Camstra, Vinciarelli, "Machine Learning for Audio, Image and Video Analysis" 2007.

UNSUPERVISED LEARNING

- Data is presented without associated output targets
 - Extracting structure from the data.
 - Examples like clustering and segmentation.
 - Concise description of the data dimensionality reduction methods.

REINFORCEMENT LEARNING

- Dynamic environment resulting in triplets state/action/reward. *
 - No optimal action for a given state
 - \checkmark over time.
 - May also involve minimizing punishment.
 - Reward/punishment could be delayed learning based on past actions.

Sutton, Barto, "Reinforcement Learning: An Introduction." MIT Press, 1998.

Algorithm has to learn actions in a way such the expected reward is maximized

SUPERVISED LEARNING

- Training data is provided with along with target values (ground truth).
 - Goal to learn the mapping function from data to targets.
 - Use the mapping function to predict unseen/test data samples.
- Two types based on the structure of the labels.
 - Classification discrete number of classes or categories.
 - Regression continuous output variables.

SUPERVISED LEARNING

Supervised Learning Model

Feature Extraction from Text, Speech, Image/Video signals. *

Data Set

- Between features and pattern recognition
 - Feature selection, dimensionality reduction.
 - Representation learning.

Models for Pattern Recognition

- Modeling the generation of data
- Modeling the separation of data
 - Support Vector Machines, Deep Neural Networks etc.

Gaussian, Mixture Gaussian, Hidden Markov Models etc.

COURSE STRUCTURE (ROUGH SCHEDULE)

- Introduction to real world data and signals text, speech, image, video.
- Dimensionality reduction principal components, linear discriminants.
- Decision theory for pattern recognition, ML and MAP methods, Bias-variance trade-off, model assessment, cross-validation, estimating generalization error.
- Generative modeling and density estimation Gaussian and mixture Gaussian models, kernel density estimators, hidden Markov models. Expectation Maximization.
- Linear regression and kernel methods. Regularization methods.
- Discriminative modeling support vector machines, decision trees and random forest classifiers, bagging and boosting.
- Neural networks: gradient descent optimization and back propagation, regularization in neural networks, dropout. normalization methods.
- Introduction to deep learning feedforward, convolutional and recurrent networks, practical considerations in deep learning.

 Introduction to transformer models - self and cross attention, encoder and decoder architectures, autoregressive decoding.

HOUSEKEEPING

- Must
- Must
 - Coding in Python \checkmark
- Mid-terms (20%) •
- * Project (25%)
- Finals (40%) *

Grading

Requisite

Probability/Random process/Stochastic Models Linear Algebra/Matrix Analysis

* Assignments - Theory + Implementation (15%)

HOUSEKEEPING

Project and Coding Assignments

Resources

- Coding and submissions
 - ✓ Preferred Language Python.
- In class demos and example recipes in python.
 - Textbooks -•
 - * PRML (Bishop), NN (Bishop).
 - Deep Learning (Goodfellow) •
 - * Online resources (papers and other textbooks listed in webpage).

Course Webpage

www.leap.ee.iisc.ac.in/sriram/teaching/MLSP25

Course Enrollment

LEAP.

- Assignments spread over 3 months (roughly one assignment) every 3 weeks).
- February second half Midterm
- February 4th week project topic and team finalization and proposal submission. [1 and 2 person teams].
- March 3rd week Project MidTerm Presentations.
- April 3rd week Final Exam
- April last week Project Final Presentations

CONTENT DELIVERY

Theory and Mathematical Foundation

Teaching Assistant - More will be added *

Course time frozen (M/W 11:00am - 12:30pm) *

Industry research lectures (1-2) •

Lecture and Beyond

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

