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REGULARIZATION IN NEURAL NETWORIKS
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DEEP NEURAL NETWORIKS

- Will the networks generalize with deep networks
- DNNs are quite data hungry and performance improves
by increasing the data.
- Generalization problem is tackled by providing
training data from all possible conditions.
- Many artificial data augmentation methods have

been successfully deployed

- Providing the state-of-art performance in several real

world applications.




OTHER APPROACHES

+ Training with noise

+ Mixture of models

+ Mixture of experts approach
+ Dropout

+ Learning rules
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An overview of gradient descent optimization
algorithms™

Sebastian Ruder
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Figure 1: SGD fluctuation (Source: Wikipedia)




Viomentum

(a) SGD without momentum (b) SGD with momentum



COMPARING DIFFERENT LEARNING RULES

—  AdaGrad
—  RMSProp
——  SGDNesterov
—  AdaDelta
Adam
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DROPOUT IN NEURAL NETWORIKS

Dropout: A Simple Way to Prevent Neural Networks from
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STANDARD VS DROPOUT NETWORIKS
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(b) Dropout network

(a) Standard network




DROPOUT [N NEURAL NETWORIKS

0.2 0.4 0.3 0.1

Random nodes are removed from the forward computation at dropout rate




STANDARD YERSUS DROPOUT
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Figure 4: Test error for different architectures
with and without dropout. The net-

works have 2 to 4 hidden layers each
with 1024 to 2048 units.




NORMALIZATION TECHNIQUES




Batch Normalization and Layer Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shaft

Sergey lotte Christian Szegedy
Google Inc., sioffe @google.com Google Inc., szegedy @google.com



Batch Normalization

Input: Values of x over a mini-batch: B = {1 . };
Parameters to be learned: v, 3

Output: {y; = BN, g(z;)}

1 T
B — — Z T; // mini-batch mean
M =1
1 T
2 9 . .
— — ;- // mini-batch variance
OR - ;(ﬂf 1B)
B — LB // normalize
Vog+e
y; « vZ; + B = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.




COMPARING DIFFERENT NORMALIZATION
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COMPARING DIFFERENT NORMALIZATION

+ Batch normalization normalizes each feature independently across the mini-batch.
Layer normalization normalizes each of the inputs in the batch independently across
all features.

+ As batch normalization is dependent on batch size, it’s not effective for small batch
sizes. Layer normalization is independent of the batch size, so it can be applied to
batches with smaller sizes as well.

+ Batch normalization requires different processing at training and inference times. As
layer normalization is done along the length of input to a specific layer, the same set
of operations can be used at both training and inference times.




NEURAL NETWORIK ARCHITECTURES




WHAT MAKES DNN SUBOPTIMAL FOR IMAGES

Vectorize
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» Ignores the local correlations in the pixels

» geometric structure is not exploited in images



CONVOLUTIONAL NEURAL NETWORKS

Convolved
Feature




CONVOLUTIONAL NEURAL NETWORKS

) ....... Reducethe ..... Size ..... O fimages ..... after ..... Convolution ..... u Singpooling ......................................................

» Keep local maximum

Single depth slice
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CONVOLUTIONAL NEURAL NETWORKS

(C1) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer l convolution layer l sub-sampling layer lfully connected MLP l

* Multiple levels of filtering and subsampling
operations.

* Feature maps are generated at every layer.



CNNS FOR MNIST
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PROPERTIES OF CNN

» Reduce number of parameters
» due to weight sharing.

» Depth does not necessarily increase
the parameter size.

» Preserving local structure
» CNN filters operate on local weights
» Deeper layers
» capture wider input context.
» ‘Tralning 1S more memory intensive

» Accumulate gradients.
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