MACHINE LEARNING FOR SIGNAL PROCESSING

24-2-2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

STORY SO FAR

EM algorithm

Decision Theory Generative Modeling

Gaussian

Modeling

Gaussian Mixture Modeling

Classification Problem

Function

Modeling

Linear Models for Regression and Classification

Kernel Machines

& Max-margin classifiers

Support Vector Machines

Data
Representations
PCA, LDA

INDIAN INSTITUTE OF SCIENCE

Discriminative Modeling

Gradient

Descent

Neural

Networks

Overlapping class boundaries

- The classes are not linearly separable Introducing slack variables ζ_n
- Slack variables are non-negative $\zeta_n \geq 0$
- They are defined using

$$t_n y(\mathbf{x}_n) \ge 1 - \zeta_n$$

The upper bound on mis-classification

$$\sum_{n} \zeta_n$$

 $\xi = 0$

SVM Formulation - overlapping classes

Formulation very similar to previous case except for additional constraints

$$0 \le a_n \le C$$

- Solved using the dual formulation sequential minimal optimization algorithm
- Final classifier is based on the sign of

$$y(\mathbf{x}) = \sum_{n \in S} a_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Overlapping class boundaries

CONNECTION WITH OTHER MODELS

Plot of the 'hinge' error function used in support vector machines, shown in blue, along with the error function for logistic regression, rescaled by a factor of $1/\ln(2)$ so that it passes through the point (0,1), shown in red. Also shown are the misclassification error in black and the squared error in green.

SVM Applications

- SVM has been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification, Cancer classification)
 - hand-written character recognition

NEURAL NETWORKS AND DEEP LEARNING

VISUALIZING LOGISTIC REGRESSION AS A NEURAL NETWORK

- * A logistic regression is the simplest neural network
 - ➤ Number of parameters in the model D+1

MULTI-CLASS LOGISTIC REGRESSION

- Targets are one-hot encoded vectors
 - Model approximates class posteriors using
 - softmax function

SOFTMAX FUNCTION

- Each value is positive
- Sum of the vector is 1.0
 - Can be interpreted as class posterior probabilities

$$softmax(\mathbf{a}) = \begin{bmatrix} \frac{e^{a_1}}{\sum_{j} e^{a_j}} \\ \frac{e^{a_2}}{\sum_{j} e^{a_j}} \\ \vdots \\ \frac{e^{a_K}}{\sum_{j} e^{a_j}} \end{bmatrix}$$

$$\begin{bmatrix} p(C_1|\mathbf{x}) \\ p(C_2|\mathbf{x}) \\ \cdot \\ \cdot \\ p(C_K|\mathbf{x}) \end{bmatrix}$$

- * Can we transform the data to linearly separable space
 - > then apply the logistic regression to find the classifier.
 - Example

QUESTION

- * Can we transform the data to linearly separable space
 - > then apply the logistic regression to find the classifier.
- ➤ Can we learn such a transform from the data itself
 - > non-linear transformation of the data is needed

QUESTION

- * Can we transform the data to linearly separable space
 - > then apply the logistic regression to find the classifier.
- > Can we learn such a transform from the data itself
 - > non-linear transformation of the data is needed.
 - > can this also be realized as neural layer

NEURAL NETWORK - 1- HIDDEN LAYER

- * Has more capacity than logistic regression
 - > can learn non-linear data separation functions
 - both 2-class and K-class classification possible
 - > can be learnt using gradient descent

TYPES OF NON-LINEARITIES

Non-linearity in hidden layer

tanh

sigmoid

ReLu

OUTPUT LAYER NON-LINEARITY AND COST FUNCTIONS

- Using a softmax non-linearity
 - error function is cross entropy

$$E_{CE} = -\sum_{n} \sum_{k} t_{nk} \log(v_{nk})$$

- For regression style tasks output is linear
 - error function is mean square error

$$E_{MSE} = -\sum_{n} \sum_{k} (t_{nk} - v_{nk})^2$$

FORWARD THROUGH THE MODEL PROPAGATION LEARNING

Computations in the forward direction

$$\mathbf{a}^{1} = \mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}$$

$$\mathbf{z}^{1} = \sigma(\mathbf{a}^{1})$$

$$\mathbf{a}^{2} = \mathbf{W}^{2}\mathbf{z}^{1} + \mathbf{b}^{2}$$

$$\mathbf{y} = softmax(\mathbf{a}^{2})$$

Loss function

$$E_{CE} = -\sum_{n} \sum_{k} t_{nk} \ log(v_{nk})$$
 $\mathbf{\Theta} = \{\mathbf{W}^1, \mathbf{b}^1, \mathbf{W}^2, \mathbf{b}^2\}$

Parameters in the model

Need to be updated based on the gradients w.r.t. the error

GRADIENT COMPUTATION IN THE MODEL

$$\mathbf{a}^{1} = \mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}$$
$$\mathbf{z}^{1} = \sigma(\mathbf{a}^{1})$$
$$\mathbf{a}^{2} = \mathbf{W}^{2}\mathbf{z}^{1} + \mathbf{b}^{2}$$
$$\mathbf{y} = softmax(\mathbf{a}^{2})$$

$$E_{CE} = -\sum_{n} \sum_{k} t_{nk} \log(v_{nk})$$

- When computing the gradients
 - Order of computations
 - ➤ The derivative of the loss function w.r.t output layer
 - ➤ The derivative of the loss function w.r.t output activation
 - ➤ The derivative of the loss function w.r.t hidden layer outputs
- INSTITUTE OF SCIENCE

The derivative of the loss function w.r.t. hidden layer activations

BACK PROPAGATION LEARNING

PERCEPTRON ALGORITHM

Perceptron Model [McCulloch, 1943, Rosenblatt, 1957]

Targets are binary classes [-1,1]

What if the data is not linearly separable

MULTI-LAYER PERCEPTRON

Multi-layer Perceptron [Hopfield, 1982]

MULTI-LAYER PERCEPTRON

- Solving a non-convex optimization.
- Iterative solution.
- Depends on the initialization.
- Convergence to a local optima.
- Judicious choice of learning rate

REGULARIZATION IN NEURAL NETWORKS

OTHER APPROACHES

- Training with noise
- Mixture of models
- Mixture of experts approach

NEURAL NETWORKS - 1 HIDDEN LAYER

- For complex problems in audio/image/text
 - Single hidden layer may be too restrictive in learning the model parameters
 - ➤ May not scale up with availability of big data.

NEURAL NETWORKS — DEEP

Neural networks with multiple hidden layers - Deep networks

DEEP NEURAL NETWORKS

Neural networks with multiple hidden layers - Deep networks

Deep networks perform hierarchical data abstractions which enable the non-linear separation of complex data samples.

Need for Depth

$$\boldsymbol{h}^{(1)} = g^{(1)} \left(\boldsymbol{W}^{(1)\top} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right)$$

$$m{h}^{(2)} = g^{(2)} \, \left(m{W}^{(2) op} m{h}^{(1)} + m{b}^{(2)}
ight)$$

DEEP NEURAL NETWORKS

- Are these networks trainable?
 - Advances in computation and processing
 - Graphical processing units (GPUs) performing multiple parallel multiply accumulate operations.
 - Large amounts of supervised data sets

DEEP NEURAL NETWORKS

- Will the networks generalize with deep networks
 - DNNs are quite data hungry and performance improves by increasing the data.
 - Generalization problem is tackled by providing training data from all possible conditions.
 - Many artificial data augmentation methods have been successfully deployed
 - Providing the state-of-art performance in several real world applications.

Representation Learning in Deep Networks

- The input data representation is one of most important components of any machine learning system.
 - Extract factors that enable classification while suppressing factors which are susceptible to noise.
- Finding the right representation for real world applications substantially challenging.
 - Deep learning solution build complex representations from simpler representations.
 - The dependencies between these hierarchical representations are refined by the target.

THANK YOU

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc sriramg@iisc.ac.in

