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Overlapping class boundaries

The classes are not linearly separable - Introducing slack
variables (,,

Slack variables are non-negative (,, = 0

They are defined using
tny(xn) 2 1 — C’n,

The upper bound on mis-classification
2 G
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The cost function to be optimized in this case
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SVM Formulation - overlapping classes

Formulation very similar to previous case except for additional
constraints

0<a, <C

Solved using the dual formulation - sequential minimal
optimization algorithm

Final classifier is based on the sign of

y(x) = Z ank(X,,X)+b
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Overlapping class boundaries

C=100

C=0.15 C=0.1




CONNECTION WITH OTHER MODELS

Plot of the ‘hinge’ error function used E(2)
in support vector machines, shown -
in blue, along with the error function

for logistic regression, rescaled by a

factor of 1/In(2) so that it passes

through the point (0, 1), shown in red.

Also shown are the misclassification

error in black and the squared error

in green.
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SVM Applications

SVM has been used successfully in many real-world problems

- text (and hypertext) categorization

- image classification

- bioinformatics (Protein classification,
Cancer classification)

- hand-written character recognition
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NEURAL NETWORIKS AND DEEP LEARNING




VISUALIZING LOGISTIC REGRESSION AS A NEURAL NETWORIK

+ A logistic regression is the simplest neural network

» Number of parameters in the model - D+1

} “oy=o(wix+b)
X

wix+b
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MULTI-CLASS LOGISTIC REGRESSION

» Targets are one-hot encoded vectors

» Model approximates class posteriors using

» softmax function 0

Zj e™J 0

I
softmazx(a) = . } —0 y = softmaz(W*'x + b)

2.5€e7 Wx 4+ b W c REXD pcRE




SOFTMAX FUNCTION

+ Each value is positive
<+ Sum of the vector is 1.0

» Can be interpreted as class posterior probabilities

softmax(a) =




QUESTION

+» Can we transform the data to linearly separable space
> then apply the logistic regression to find the classifier.

» Example

Cartesian coordinates Polar coordinates




QUESTION

+» Can we transform the data to linearly separable space
> then apply the logistic regression to find the classifier.
» Can we learn such a transform from the data itself

» non-linear transformation of the data is needed

o( - )
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b(x) W' P(x) + b




QUESTION

+» Can we transform the data to linearly separable space
> then apply the logistic regression to find the classifier.

» Can we learn such a transform from the data itself
» non-linear transformation of the data is needed.

» can this also be realized as neural layer




NEURAL NETWORIK = 1- HIDDEN LAYER

+ Has more capacity than logistic regression
» can learn non-linear data separation functions
> both 2-class and K-class classification possible

» can be learnt using gradient descent

W'he W*




TYPES OF NON-LINEARITIES

Non-linearity in hidden layer

tanh sigmoid Relu
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OUTPUT LAYER NON-LINEARITY AND COST FUNCTIONS

» Using a softmax non-linearity

» error function is cross entropy

Ece=—% Y tok log(vnk)
n k

» For regression style tasks - output is linear

» error function is mean square error

EMSE — Z Z(tnk — vnk)2
n k




FORWARD THROUGH THE MODEL PROPAGATION LEARNING

+ Computations in the forward direction

a' = W'x + b’
z' = o(a')
22 — W2zl + b2

y = softmax(a®)

EC’E — Z Ztnk ZOQ(Unk)
n k

®={W', b, W? K b?}

+» Loss function

+» Parameters in the model

; i‘ to be updated based on the gradients w.r.t. the error
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GRADIENT COMPUTATION IN THE MODEL

a' = W'x + b

z' = o(a')

2 __ W2 1 i b2
i ) Ecg=—) Y tuk log(vn)
n k

y = softmax(a®)

+ When computing the gradients
» Order of computations
» The derivative of the loss function w.r.t output layer
» The derivative of the loss function w.r.t output activation
» The derivative of the loss function w.r.t hidden layer outputs

"+ % > The derivative ot the loss function w.r.t. hidden layer activations




BACK PROPAGATION LEARNING

Neural Network — Backpropagation &, 7%

1 MAKING Al SIMPLE

Input Layer Hidden Layer Output Layer

© machinelearningknowledge.ai




PERCEPTRON ALGORITHM

Perceptron Model [McCulloch, 1943, Rosenblatt, 1957]

>v

Targets are binary classes [-1,1] ° o % .

What if the data is not R
linearly separable .
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MULTI-LAYER PERCEPTRON

Multi-layer Perceptron [Hopfield, 1982]

w!© w?

} } A ve = ¢(w2¢(wlx+b1) +b2)

bl . b2

X

@ non-linear function (tanh,sigmoid)
1) thresholding function




MULTI-LAYER PERCEPTRON

- Solving a non-convex
optimization.

- Iterative solution.

- Depends on the initialization.

- Convergence to a local
optima.

- Judicious choice of learning T
rate epoch

low learning rate

high learning rate
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REGULARIZATION IN NEURAL NETWORIKS

validation

training




OTHER APPROACHES

+ Training with noise
+» Mixture of models

» Mixture of experts approach
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NEURAL NETWORKS = 1 HIDDEN LAYER

+ For complex problems in audio/image/text
» Single hidden layer may be too restrictive in learning the model parameters

» May not scale up with availability of big data.




NEURAL NETWORIKS — DEEP




Neural networks with multiple hidden layers - Deep networks
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DEEP NEURAL NETWORIKS

Neural networks with multiple hidden layers - Deep networks

1 2 3 \ .. .QQ ‘..”‘
W= W* & W w+ NP I

bl b?

Deep networks perform hierarchical data abstractions which
enable the non-linear separation of complex data samples.




Need for Depth
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DEEP NEURAL NETWORIKS

50X BOOST IN DEEP LEARNING
IN 3 YEARS
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M40 + cuDNN4
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Caffe Performance
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AlexNet training throughput based on 20 iterations,
CPU: 1x ES5-2680v3 12 Core 2.5GHz. 128GE System Memory, Ubuntu 14.04

- Are these networks trainable ?
- Advances in computation and processing
- Graphical processing units (GPUs) performing multiple
parallel multiply accumulate operations.

- Large amounts of supervised data sets




DEEP NEURAL NETWORIKS

- Will the networks generalize with deep networks
- DNNs are quite data hungry and performance improves
by increasing the data.
- Generalization problem is tackled by providing
training data from all possible conditions.
- Many artificial data augmentation methods have

been successfully deployed

- Providing the state-of-art performance in several real

world applications.




Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system.
- Extract factors that enable classification while
suppressing factors which are susceptible to noise.

- Finding the right representation for real world applications -
substantially challenging.
- Deep learning solution - build complex representations
from simpler representations.
- The dependencies between these hierarchical
representations are refined by the target.
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