MACHINE LEARNING FOR SIGNAL PROCESSING

17-2-2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

STORY SO FAR

EM algorithm

Decision Theory Generative Modeling

Gaussian Modeling

Gaussian
Mixture
Modeling

Classification Problem

ification

Function

Modeling

Linear Models for Regression and Classification

Kernel Machines

& Max-margin classifiers

Support Vector Machines

Data
Representations
PCA, LDA

Discriminative Modeling

Gradient

Descent

Neural

Networks

SVM Formulation

* Goal - 1) Correctly classify all training data

$$\mathbf{w}^{T}_{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \ge 1 \quad if \quad t_{n} = +1$$

$$\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \le 1 \quad if \quad t_{n} = -1$$

$$t_{n}(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b) \ge 1$$

2) Define the Margin

$$\frac{1}{||\mathbf{w}||} min_n \left[t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \right]$$

3) Maximize the Margin

$$argmax_{\mathbf{w},b} \left\{ \frac{1}{||\mathbf{w}||} min_n \left[t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \right] \right\}$$

* Equivalently written as

Solving the Optimization Problem

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a *dual problem* where a *Lagrange multiplier* a_n is associated with every constraint in the primary problem:
- The dual problem in this case is maximized

Find
$$\{a_1,...,a_N\}$$
 such that
$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^N a_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N t_n t_m a_n a_m k(\mathbf{x}_n,\mathbf{x}_m) \text{ maximized}$$
 and $\sum_n a_n t_n = 0$ $a_n \geq 0$

Solving the Optimization Problem

• The solution has the form:

$$\mathbf{w} = \sum_{n=1}^{\infty} a_n \boldsymbol{\phi}(\mathbf{x}_n)$$

• Each non-zero a_n indicates that corresponding x_n is a support vector. Let S denote the set of support vectors.

$$b = y(\mathbf{x}_n) - \sum_{m \in S} a_m k(\mathbf{x}_m, \mathbf{x}_n)$$

• And the classifying function will have the form:

$$y(\mathbf{x}) = \sum_{n \in S} a_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Overlapping class boundaries

- The classes are not linearly separable Introducing slack variables ζ_n
- Slack variables are non-negative $\zeta_n \geq 0$
- They are defined using

$$t_n y(\mathbf{x}_n) \ge 1 - \zeta_n$$

The upper bound on mis-classification

$$\sum_{n} \zeta_n$$

 $\xi = 0$

SVM Formulation - overlapping classes

Formulation very similar to previous case except for additional constraints

$$0 \le a_n \le C$$

- Solved using the dual formulation sequential minimal optimization algorithm
- Final classifier is based on the sign of

$$y(\mathbf{x}) = \sum_{n \in S} a_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Overlapping class boundaries

CONNECTION WITH OTHER MODELS

Plot of the 'hinge' error function used in support vector machines, shown in blue, along with the error function for logistic regression, rescaled by a factor of $1/\ln(2)$ so that it passes through the point (0,1), shown in red. Also shown are the misclassification error in black and the squared error in green.

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection

SVM Applications

- SVM has been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification, Cancer classification)
 - hand-written character recognition

Application 1: Cancer Classification

- SVM has been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification,
 Cancer classification)
 - hand-written character recognition

 E.g., find the most compact panel of breast cancer biomarkers from microarray gene expression data for 20,000 genes:

Application 1: Cancer Classification

Weakness of SVM

- It is sensitive to noise
 - A relatively small number of mislabeled examples can dramatically decrease the performance
- It only considers two classes
 - how to do multi-class classification with SVM?
 - Answer:
- 1) with output m, learn m SVM's
 - □ SVM 1 learns "Output==1" vs "Output != 1"
 - □ SVM 2 learns "Output==2" vs "Output != 2"

 - SVM m learns "Output==m" vs "Output != m"
- 2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

Application 2: Text Categorization

- Task: The classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content.
 - email filtering, web searching, sorting documents by topic, etc...
- A document can be assigned to more than one category, so this can be viewed as a series of binary classification problems, one for each category.

Application 2: Text Categorization

IR's vector space model (aka bag-of-words representation)

- A doc is represented by a vector indexed by a pre-fixed set or dictionary of terms
- Values of an entry can be binary or weights

$$\phi_i(x) = \frac{\mathrm{tf}_i \log (\mathrm{idf}_i)}{\kappa},$$

• Doc $\mathbf{x} => \mathbf{\phi}(\mathbf{x})$

Application 3: Handwriting Recognition

- The distance between two documents is $\langle \phi(x) | \phi(z) \rangle$
- $K(x,z) = \langle \phi(x) | \phi(z) \rangle$ is a valid kernel, SVM can be used with K(x,z) for discrimination.
 - 23 SVMs: full MNIST results

- Why SVM?
 - High dimensional input space
 - Few irrelevant features (dense concept)
 - Sparse document vectors (sparse instances)
 - Text categorization problems are linearly separable

Classifier	Test Error
linear	8.4%
3-nearest-neighbor	2.4%
RBF-SVM	1.4 %

For example MNIST hand-writing recognition. 60,000 training examples, 10000 test examples, 28x28. Linear SVM has around 8.5% test error. Polynomial SVM has around 1% test error.

Some Considerations

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Softwares

30 SVMs : software

Lots of SVM software:

- LibSVM (C++)
- SVMLight (C)

As well as complete machine learning toolboxes that include SVMs:

- Torch (C++)
- Spider (Matlab)
- Weka (Java)

All available through www.kernel-machines.org.

NEURAL NETWORKS AND DEEP LEARNING

VISUALIZING LOGISTIC REGRESSION AS A NEURAL NETWORK

- * A logistic regression is the simplest neural network
 - ➤ Number of parameters in the model D+1

MULTI-CLASS LOGISTIC REGRESSION

- Targets are one-hot encoded vectors
 - Model approximates class posteriors using
 - softmax function

SOFTMAX FUNCTION

- Each value is positive
- Sum of the vector is 1.0
 - Can be interpreted as class posterior probabilities

$$softmax(\mathbf{a}) = \begin{bmatrix} \frac{e^{a_1}}{\sum_{j} e^{a_j}} \\ \frac{e^{a_2}}{\sum_{j} e^{a_j}} \\ \vdots \\ \frac{e^{a_K}}{\sum_{j} e^{a_j}} \end{bmatrix}$$

$$\begin{bmatrix} p(C_1|\mathbf{x}) \\ p(C_2|\mathbf{x}) \\ \cdot \\ \cdot \\ p(C_K|\mathbf{x}) \end{bmatrix}$$

- * Can we transform the data to linearly separable space
 - > then apply the logistic regression to find the classifier.
 - Example

QUESTION

- * Can we transform the data to linearly separable space
 - > then apply the logistic regression to find the classifier.
- ➤ Can we learn such a transform from the data itself
 - > non-linear transformation of the data is needed

QUESTION

- * Can we transform the data to linearly separable space
 - > then apply the logistic regression to find the classifier.
- > Can we learn such a transform from the data itself
 - > non-linear transformation of the data is needed.
 - > can this also be realized as neural layer

NEURAL NETWORK - 1- HIDDEN LAYER

- * Has more capacity than logistic regression
 - > can learn non-linear data separation functions
 - both 2-class and K-class classification possible
 - > can be learnt using gradient descent

TYPES OF NON-LINEARITIES

Non-linearity in hidden layer

tanh

sigmoid

ReLu

OUTPUT LAYER NON-LINEARITY AND COST FUNCTIONS

- Using a softmax non-linearity
 - error function is cross entropy

$$E_{CE} = -\sum_{n} \sum_{k} t_{nk} \log(v_{nk})$$

- For regression style tasks output is linear
 - error function is mean square error

$$E_{MSE} = -\sum_{n} \sum_{k} (t_{nk} - v_{nk})^2$$

FORWARD THROUGH THE MODEL PROPAGATION LEARNING

Computations in the forward direction

$$\mathbf{a}^{1} = \mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}$$

$$\mathbf{z}^{1} = \sigma(\mathbf{a}^{1})$$

$$\mathbf{a}^{2} = \mathbf{W}^{2}\mathbf{z}^{1} + \mathbf{b}^{2}$$

$$\mathbf{y} = softmax(\mathbf{a}^{2})$$

Loss function

$$E_{CE} = -\sum_{n} \sum_{k} t_{nk} \ log(v_{nk})$$
 $\mathbf{\Theta} = \{\mathbf{W}^1, \mathbf{b}^1, \mathbf{W}^2, \mathbf{b}^2\}$

Parameters in the model

Need to be updated based on the gradients w.r.t. the error

GRADIENT COMPUTATION IN THE MODEL

$$\mathbf{a}^{1} = \mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}$$
$$\mathbf{z}^{1} = \sigma(\mathbf{a}^{1})$$
$$\mathbf{a}^{2} = \mathbf{W}^{2}\mathbf{z}^{1} + \mathbf{b}^{2}$$
$$\mathbf{y} = softmax(\mathbf{a}^{2})$$

$$E_{CE} = -\sum_{n} \sum_{k} t_{nk} \log(v_{nk})$$

- When computing the gradients
 - Order of computations
 - ➤ The derivative of the loss function w.r.t output layer
 - ➤ The derivative of the loss function w.r.t output activation
 - > The derivative of the loss function w.r.t hidden layer outputs
- INSTITUTE OF SCIENCE

The derivative of the loss function w.r.t. hidden layer activations

BACK PROPAGATION LEARNING

PERCEPTRON ALGORITHM

Perceptron Model [McCulloch, 1943, Rosenblatt, 1957]

Targets are binary classes [-1,1]

What if the data is not linearly separable

MULTI-LAYER PERCEPTRON

Multi-layer Perceptron [Hopfield, 1982]

MULTI-LAYER PERCEPTRON

- Solving a non-convex optimization.
- Iterative solution.
- Depends on the initialization.
- Convergence to a local optima.
- Judicious choice of learning rate

NEURAL NETWORKS - 1 HIDDEN LAYER

- For complex problems in audio/image/text
 - Single hidden layer may be too restrictive in learning the model parameters
 - ➤ May not scale up with availability of big data.

NEURAL NETWORKS — DEEP

Neural networks with multiple hidden layers - Deep networks

DEEP NEURAL NETWORKS

Neural networks with multiple hidden layers - Deep networks

Deep networks perform hierarchical data abstractions which enable the non-linear separation of complex data samples.

Need for Depth

$$\boldsymbol{h}^{(1)} = g^{(1)} \left(\boldsymbol{W}^{(1)\top} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right)$$

$$m{h}^{(2)} = g^{(2)} \, \left(m{W}^{(2) op} m{h}^{(1)} + m{b}^{(2)}
ight)$$

DEEP NEURAL NETWORKS

- Are these networks trainable?
 - Advances in computation and processing
 - Graphical processing units (GPUs) performing multiple parallel multiply accumulate operations.
 - Large amounts of supervised data sets

DEEP NEURAL NETWORKS

- Will the networks generalize with deep networks
 - DNNs are quite data hungry and performance improves by increasing the data.
 - Generalization problem is tackled by providing training data from all possible conditions.
 - Many artificial data augmentation methods have been successfully deployed
 - Providing the state-of-art performance in several real world applications.

Representation Learning in Deep Networks

- The input data representation is one of most important components of any machine learning system.
 - Extract factors that enable classification while suppressing factors which are susceptible to noise.
- Finding the right representation for real world applications substantially challenging.
 - Deep learning solution build complex representations from simpler representations.
 - The dependencies between these hierarchical representations are refined by the target.

THANK YOU

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc sriramg@iisc.ac.in

