MACHINE LEARNING FOR SIGNAL PROCESSING 12 - 2 - 2025

Sriram Ganapathy LEAP lab, Electrical Engineering, Indian Institute of Science, sriramg@iisc.ac.in

Viveka Salinamakki, Varada R. LEAP lab, Electrical Engineering, Indian Institute of Science

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP25/

LINEAR REGRESSION REVISITED

- Primal and dual forms
- Solution in dual space •
- Kernels

KERNEL MACHINES

- out great:

Datasets that are linearly separable with some noise work

X

• How about... mapping data to a higher-dimensional space:

KERNEL TRICK

dimensional feature space where the training set is separable:

General idea: the original input space can always be mapped to some higher-

The "Kernel Trick"

- The linear classifier relies on dot product between vectors $k(x_i, x_j) = x_i^T x_j$ If every data point is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \to \phi(\mathbf{x})$, the dot product becomes:

 $k(\mathbf{x}_{i\prime}\mathbf{x}_{i}) = \phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x}_{i})$

- A *kernel function* is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $k(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$ Need to show that $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$: $k(\mathbf{x}_{i\prime}\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{T}\mathbf{x}_{j})^{2}$

 $= 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2}$

= $\phi(\mathbf{x_i})^T \phi(\mathbf{x_i})$, where $\phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 & x_2 & \sqrt{2} & x_1 & \sqrt{2} & x_2 \end{bmatrix}$

- $= \begin{bmatrix} 1 & x_{i1}^2 \sqrt{2} & x_{i1}x_{i2} & x_{i2}^2 \sqrt{2}x_{i1} \sqrt{2}x_{i2} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 1 & x_{j1}^2 \sqrt{2} & x_{j1}x_{j2} & x_{j2}^2 \sqrt{2}x_{j1} \sqrt{2}x_{j2} \end{bmatrix}$

KERNELS

SALE OF

- For many functions $k(x_i, x_i)$ checking that $k(\mathbf{x}_{i},\mathbf{x}_{j}) = \phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x}_{j})$ can be cumbersome.
- Mercer's theorem: Every semi-positive definite symmetric function is a kernel Semi-positive definite symmetric functions correspond to a semi-positive
 - definite symmetric Gram matrix:

$k(\mathbf{x_1},\mathbf{x_1})$	$k(\mathbf{x_1},\mathbf{x_2})$	$k(\mathbf{x_1},\mathbf{x_3})$	• • •	$k(\mathbf{x_1}, \mathbf{x_N})$
$k(\mathbf{x_2},\mathbf{x_1})$	$k(\mathbf{x_2},\mathbf{x_2})$	$k(\mathbf{x}_2,\mathbf{x}_3)$		$k(\mathbf{x_2},\mathbf{x_N})$
• • •	•••	• • •	•••	• • •
$k(\mathbf{x}_{N},\mathbf{x}_{1})$	$k(\mathbf{x}_{N},\mathbf{x}_{2})$	$k(\mathbf{x}_{N},\mathbf{x}_{3})$	• • •	$k(\mathbf{x}_{N},\mathbf{x}_{N})$

LEAP

EXAMPLES OF KERNEL FUNCTIONS

- Linear: $k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \mathbf{x}_{i}^{T}\mathbf{x}_{j}$
- Polynomial of power $p: k(\mathbf{x_i}, \mathbf{x_i})$
- Gaussian (radial-basis function network):
 - $k(\mathbf{x}_i, \mathbf{x}_j) = \exp$

Sigmoid: $k(\mathbf{x}_{i}, \mathbf{x}_{j}) = tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$

$$) = (1 + \mathbf{x}_i \mathbf{x}_j)^p$$

$$p \, rac{-||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma^2}$$

PROPERTIES OF KERNEL FUNCTIONS

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}')) = exp(k)$$

$$k(\mathbf{x}, \mathbf{x}') = exp(k)$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}')$$

- \mathbf{x}' $k_1(\mathbf{x},\mathbf{x}')f(\mathbf{x}')$ $(\mathbf{x}, \mathbf{x}'))$ $k_1(\mathbf{x}, \mathbf{x}'))$ $\mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$ $\mathbf{x}')k_2(\mathbf{x},\mathbf{x}')$ $(\mathbf{x}), \boldsymbol{\phi}(\mathbf{x}'))$
- $(\mathbf{x}_a) + k_b(\mathbf{x}_b, \mathbf{x}_b')$ $(\mathbf{x}_a, \mathbf{x}_a') k_b(\mathbf{x}_b, \mathbf{x}_b')$

Non-linear Kernel Function

Figure 6.1 'Gaussians' (centre column), and logistic sigmoids (right column).

Illustration of the construction of kernel functions starting from a corresponding set of basis functions. In each column the lower plot shows the kernel function k(x, x') defined by (6.10) plotted as a function of x for x' = 0, while the upper plot shows the corresponding basis functions given by polynomials (left column),

 $\left(\right)$

"SVM and applications", Mingyue Tan. Univ of British Columbia

Linear Classifiers

° denotes -1

LINEAR CLASSIFIERS

• denotes +1

° denotes -1

NEAR CLASSIFIERS

• denotes +1

° denotes -1

LINEAR CLASSIFIERS

• denotes +1

° denotes -1

LINEAR CLASSIFIERS

• denotes +1

° denotes -1

"SVM and applications", Mingyue Tan. Univ of British Columbia

MAX-MARGIN CLASSIFIERS

- denotes +1
- ° denotes -1

X

 $f(\mathbf{x}; \mathbf{w}, b) = sgn(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + b)$

0

0

0

о _О

00

0

0

0

0

0

0

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

SVM Formulation

Goal - 1) Correctly classify all training data • $\mathbf{w}^{T}_{T}\boldsymbol{\phi}(\mathbf{x}_{n}) + b \geq 1 \quad if \quad t_{n} = +1 \\ \mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{n}) + b \leq 1 \quad if \quad t_{n} = -1 \\ t_{n}(\mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{n}) + b) \geq 1$ 2) Define the Margin $\frac{1}{||\mathbf{w}||} \min_n \left[t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \right]$ 3) Maximize the Margin $argmax_{\mathbf{w},b} \left\{ \frac{1}{||\mathbf{w}||} \right\}$ * Equivalently written as $argmin_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^{2such that} \quad t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \ge 1$

$$\bar{|}\min_n \left[t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b)\right] \bigg\}$$

Constrained Optimization Basics

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

Cambridge University Press

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Convex Optimization Stephen Boyd and Lieven Vandenberghe

(and for $\lambda \ge 0$) we have $L(x, \lambda) \le f_0(x)$.

Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the objective function f_0 , and the dashed curve shows the constraint function f_1 . The feasible set is the interval [-0.46, 0.46], which is indicated by the two dotted vertical lines. The optimal point and value are $x^* = -0.46$, $p^* = 1.54$ (shown as a circle). The dotted curves show $L(x, \lambda)$ for $\lambda = 0.1, 0.2, \ldots, 1.0$. Each of these has a minimum value smaller than p^* , since on the feasible set

shows p^* , the optimal value of the problem.

Figure 5.2 The dual function g for the problem in figure 5.1. Neither f_0 nor f_1 is convex, but the dual function is concave. The horizontal dashed line

Solving the Optimization Problem

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a *dual problem* where a *Lagrange multiplier* a_n is associated with every constraint in the primary problem:
- The dual problem in this case is maximized

and $\sum a_n t_n = 0$ $a_n \ge 0$

EAP.

Solving the Optimization Problem

The solution has the form:

$$\mathbf{w} = \sum_{n=1}^{\infty} a_n \boldsymbol{\phi}(\mathbf{x}_n)$$

Each non-zero a_n indicates that corresponding x_n is a support vector. Let S denote the set of support vectors.

 $b = y(\mathbf{x}_n) - \sum a_m k(\mathbf{x}_m, \mathbf{x}_n)$ $m \in S$ And the classifying function will have the form:

$$\sum_{S} a_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Overlapping class boundaries

- variables ζ_n
- Slack variables are non-negative $\zeta_n \geq 0$
- They are defined using

 $t_n y(\mathbf{x}_n) \ge 1 - \zeta_n$

The upper bound on mis-classification

The cost function to be optimized in this case

The classes are not linearly separable - Introducing slack

y = -1 $\xi = 0$

SVM Formulation - overlapping classes

Formulation very similar to previous case except for additional constraints

 $0 \leq a_n \leq C$

- Solved using the dual formulation sequential minimal optimization algorithm
- Final classifier is based on the sign of

 $y(\mathbf{x}) = \sum a_n k(\mathbf{x}_n, \mathbf{x}) + b$

THANK YOU

.

Sriram Ganapathy and TA team LEAP lab, C328, EE, IISc <u>sriramg@iisc.ac.in</u>

