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LINEAR REGRESSION REVISITED

+ Primal and dual forms
+ Solution in dual space

+» Kernels




KERNEL MACHINES

- Datasets that are linearly separable with some noise work
out great:

- But what are we going to do if the dataset is just too hard?
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- How about... mapping data to a higher-dimensional space:




KERNEL TRICK

- General idea: the original input space can always be mapped to some higher-
dimensional feature space where the training set is separable:




The “Kernel Trick™

- The linear classifier relies on dot product between vectors k(x;,x;)=x;x;

- If every data point is mapped into high-dimensional space via some
transformation @: x — ¢(x), the dot product becomes:

k(xi/xj): P(x;) TCP(Xj)

= Akernel function is some function that corresponds to an inner product in some
expanded feature space.

- Example:
2-dimensional vectors x=[x; x[; let k(x;,x;)=(1 + x;7x;)?
Need to show that K(x;,x;)= ¢ (x;) Td(x)):
k(xi,Xj):(l + XiTX]‘)zl
=1+ inZX'IZ + 2 Xi11X11 xi2X'2‘|‘ xZQZX'ZZ + inlx'l + 2xi2x]-2
= [1 xi12 V2 Xi1X xizz \/2xi1 \/_2xi2]T []. XﬂZ V2 xﬂsz x]'22 \/_ZX]'I \/ZX]Q]
= d(x;) TP(x;), where d(x) = [1 x;2 V2 x3%, x,2 V2x; V2x,]




KERNELS

For many functions k(x;,x;) checking that

k(xi,%)= G ) Tdh(x;) can be cumbersome.
Mercer’s theorem: Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-positive
definite symmetric Gram matrix:




EXAMPLES OF KERNEL FUNCTIONS

- Linear: k(xi,Xj): X; TX]'

- Polynomial of power p: k(x;,x;)= (1+ x; Tx;)r

- Gaussian (radial-basis function network):

—||x; — x;]|°

k(xi,X;) = exp —

= Sigmoid: k(xi,x]-)= tanh(f)oxi ij T ﬁl)




PROPERTIES OF KERNEL FUNCTIONS
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Non-linear Kernel Function
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Figure 6.1 lllustration of the construction of kernel functions starting from a corresponding set of basis func-
tions. In each column the lower plot shows the kernel function k(z, z') defined by (6.10) plotted as a function of
x for ' = 0, while the upper plot shows the corresponding basis functions given by polynomials (left column),
‘Gaussians’ (centre column), and logistic sigmoids (right column).




| .inear Classitiers

@ Jenotes +1
() denotes -1

How would you
o classify this data?

“SVM and applications”, Mingyue Tan. Univ of British Columbia



LINEAR CLASSIFIERS
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LINEAR CLASSIFIERS

e denotes +1

> denotes -1

Any of these would be
fine..

..but which is best?
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LINEAR CLASSIFIERS

e denotes +1

o denotes -1

oo How would you
classify this data?

Misclassified
to +1 class

“SVM and applications”, Mingyue Tan. Univ OfBTZtZSh Columbia | LEAP




MAX-MARGIN CLASSIFIERS
X - f ~ yest

e denotes +1

° denotes -1

Define the margin

~ of a linear classifier
as the width that the
boundary could be
increased by before
hitting a datapoint.

LEAP




SVM Formulation

“ (Goal - 1) Correctly classify all training data

wid(x,)+b>1 if t,=+1
+b<1 if t,=-1

th(Wh b(x,) +0) > 1
2) Define the Margin

3) Maximize the Margin
1

W]

Ming, [tn(W' ¢(x,) + b)) }

ar gma:z:w,b{

* Equivalently written as

argmine, o [[w]Uh At ¢ (W p(x,) +b) > 1

LEAP



Constrained Optimization Basics

Stephen Boyd and
Lieven vVandenberghe

convex Convex Optimization
Optimization

Stephen Boyd and Lieven Vandenberghe

Cambridge University Press

https:/ / web.stanford.edu/~boyd / cvxbook /bv_cvxbook.pdf
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function fo, and the dashed curve shows the constraint function f;.
The feasible set is the interval [—0.46,0.46|, which is indicated by the two
dotted vertical lines. The optimal point and value are x* = —0.46, p* = 1.54
(shown as a circle). The dotted curves show L(z,\) for A = 0.1, 0.2,...,1.0.
Each of these has a minimum value smaller than p*, since on the feasible set

(and for A > 0) we have L(z,\) < fo(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither fy nor

f1 is convex, but the dual function is concave. The horizontal dashed line
shows p*, the optimal value of the problem.

LEAP



Solving the Optimization Problem

Need to optimize a quadratic function subject to linear constraints.

Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather intricate)
algorithms exist for solving them.

The solution involves constructing a dual problem where a Lagrange
multiplier @, is associated with every constraint in the primary

problem:

The dual problem in this case is maximized

Find {a1,..,an } such that
N N

N

~ 1

L(a) = E an = E E bl Gn Qo k(X 1, , Xy ) maximized
n—=—1

n=1 m=1

and ) ant, =0 a, >0




Solving the Optimization Problem

“ The solution]\bas the form:

W= ) and(xn)
n=1

- Each non-zero 2, indicates that corresponding x,, is a
support vector. Let S denote the set of support vectors.

b_yxn E :a'm xmaxn

meS
- And the classifying function will have the form:

= Z ank(X,,Xx) +b

nes




Overlapping class boundaries

The classes are not linearly separable - Introducing slack
variables (,,

Slack variables are non-negative (,, = 0

They are defined using
tny(xn) 2 1 — C’n,

The upper bound on mis-classification
2 G
T

The cost function to be optimized in this case

ngn | ;WTW




SVM Formulation - overlapping classes

Formulation very similar to previous case except for additional
constraints

0<a, <C

Solved using the dual formulation - sequential minimal
optimization algorithm

Final classifier is based on the sign of

y(x) = Z ank(X,,X)+b

nes
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