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Linear regression revisited
❖ Primal and dual forms 

❖ Solution in dual space 

❖ Kernels 



Kernel machines
■ Datasets that are linearly separable with some noise work 

out great:

■ But what are we going to do if the dataset is just too hard? 

■ How about… mapping data to a higher-dimensional space:
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Kernel trick
■ General idea:   the original input space can always be mapped to some higher-

dimensional feature space where the training set is separable:

Φ:  x → φ(x)



The “Kernel Trick”
■ The linear classifier relies on dot product between vectors k(xi,xj)=xiTxj

■ If every data point is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the dot product becomes:

                              k(xi,xj)= φ(xi) Tφ(xj)
■ A kernel function is some function that corresponds to an inner product in some 

expanded feature space.
■ Example: 

2-dimensional vectors x=[x1   x2];  let k(xi,xj)=(1 + xiTxj)2,

Need to show that K(xi,xj)= φ(xi) Tφ(xj):
 k(xi,xj)=(1 + xiTxj)2,

                           = 1+ xi12xj12 + 2 xi1xj1 xi2xj2+ xi22xj22 + 2xi1xj1 + 2xi2xj2

      = [1  xi12  √2 xi1xi2   xi22  √2xi1  √2xi2]T [1  xj12  √2 xj1xj2   xj22  √2xj1  √2xj2] 
      = φ(xi) Tφ(xj),    where φ(x) =  [1  x12  √2 x1x2   x22   √2x1  √2x2]



Kernels
■ For many functions k(xi,xj) checking that 

                k(xi,xj)= φ(xi) Tφ(xj) can be cumbersome. 
■ Mercer’s theorem:  Every semi-positive definite symmetric function is a kernel
■ Semi-positive definite symmetric functions correspond to a semi-positive 

definite symmetric Gram matrix:

k(x1,x1) k(x1,x2) k(x1,x3) … k(x1,xN)

k(x2,x1) k(x2,x2) k(x2,x3) k(x2,xN)

… … … … … 
k(xN,x1) k(xN,x2) k(xN,x3) … k(xN,xN)

K   =



Examples of kernel functions

■ Linear: k(xi,xj)= xi Txj

■ Polynomial of power p: k(xi,xj)= (1+ xi Txj)p

■ Gaussian (radial-basis function network):

■ Sigmoid: k(xi,xj)= tanh(β0xi Txj + β1)



Properties of kernel functions



Non-linear Kernel Function



Linear Classifiers 
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How would you 
classify this data?

Misclassified 
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denotes +1

denotes -1

Define the margin 
of a linear classifier 
as the width that the 
boundary could be 
increased by before 
hitting a datapoint.

x yestf         

Max-Margin CLASSIFIERS



SVM Formulation
❖ Goal -  1) Correctly classify all training data

             
2) Define the Margin 

3) Maximize  the Margin

                     
❖ Equivalently written as
                                                           such that 



Constrained Optimization Basics

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf







Solving the Optimization Problem
■ Need to optimize a quadratic function subject to linear constraints.
■ Quadratic optimization problems are a well-known class of 

mathematical programming problems, and many (rather intricate) 
algorithms exist for solving them. 

■ The solution involves constructing a dual problem where a Lagrange 
multiplier           is associated with every constraint in the primary 
problem:

■ The dual problem in this case is maximized

Find                        such that 

and                        ,

maximized



■ The solution has the form: 

■ Each non-zero an indicates that corresponding xn is a 
support vector. Let S denote the set of support vectors.  

■ And the classifying function will have the form:

Solving the Optimization Problem



■ The classes are not linearly separable - Introducing slack 
variables 

■ Slack variables are non-negative
■ They are defined using

■ The upper bound on mis-classification 

■ The cost function to be optimized in this case 

Overlapping class boundaries 



SVM Formulation - overlapping classes

■ Formulation very similar to previous case except for additional 
constraints 

■ Solved using the dual formulation - sequential minimal 
optimization algorithm 

■ Final classifier is based on the sign of 
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