

Deep Learning: Theory and Practice

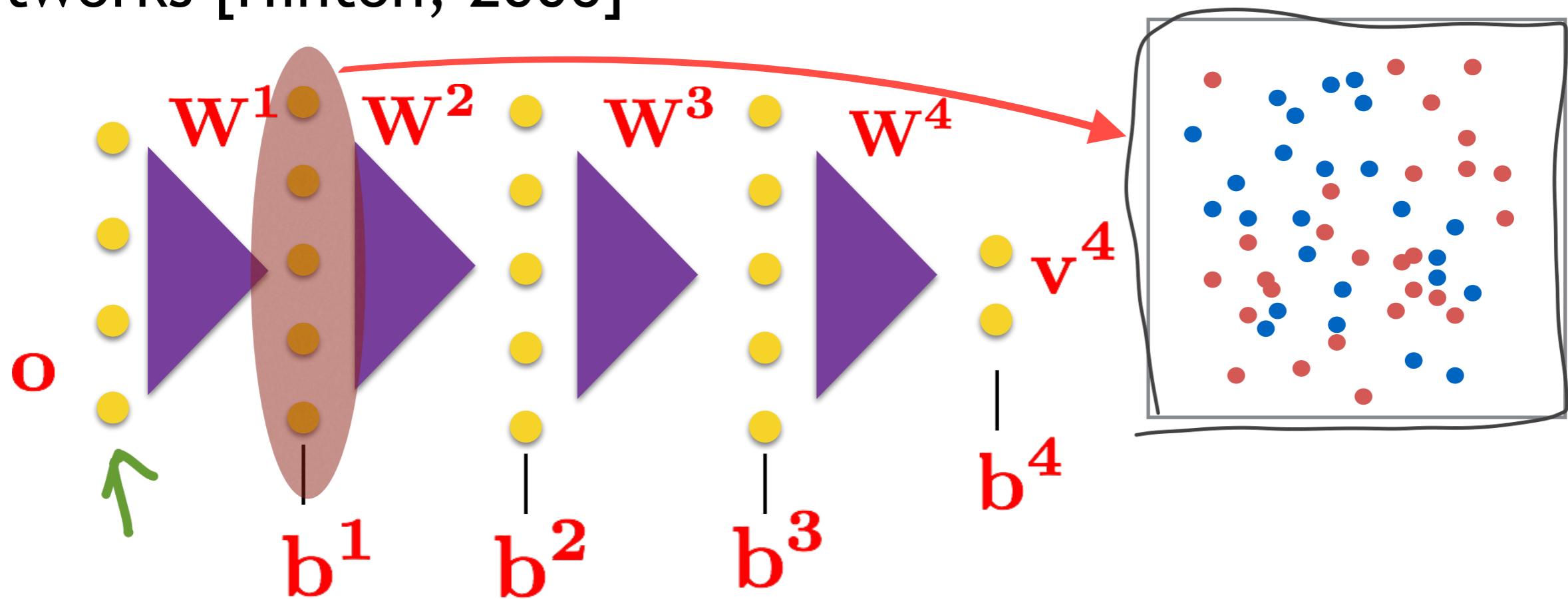
Deep Learning - Practical
Considerations

02-04-2020

deeplearning.cce2020@gmail.com

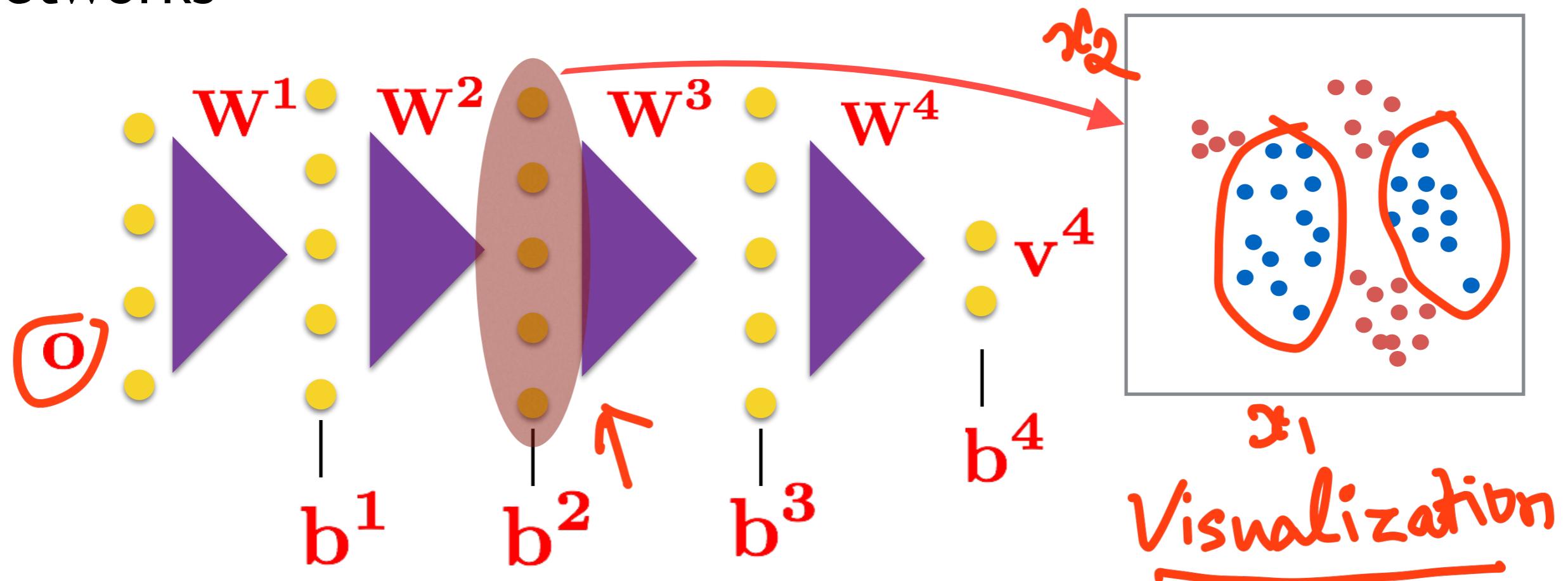
Deep Networks Intuition

Neural networks with multiple hidden layers - Deep networks [Hinton, 2006]



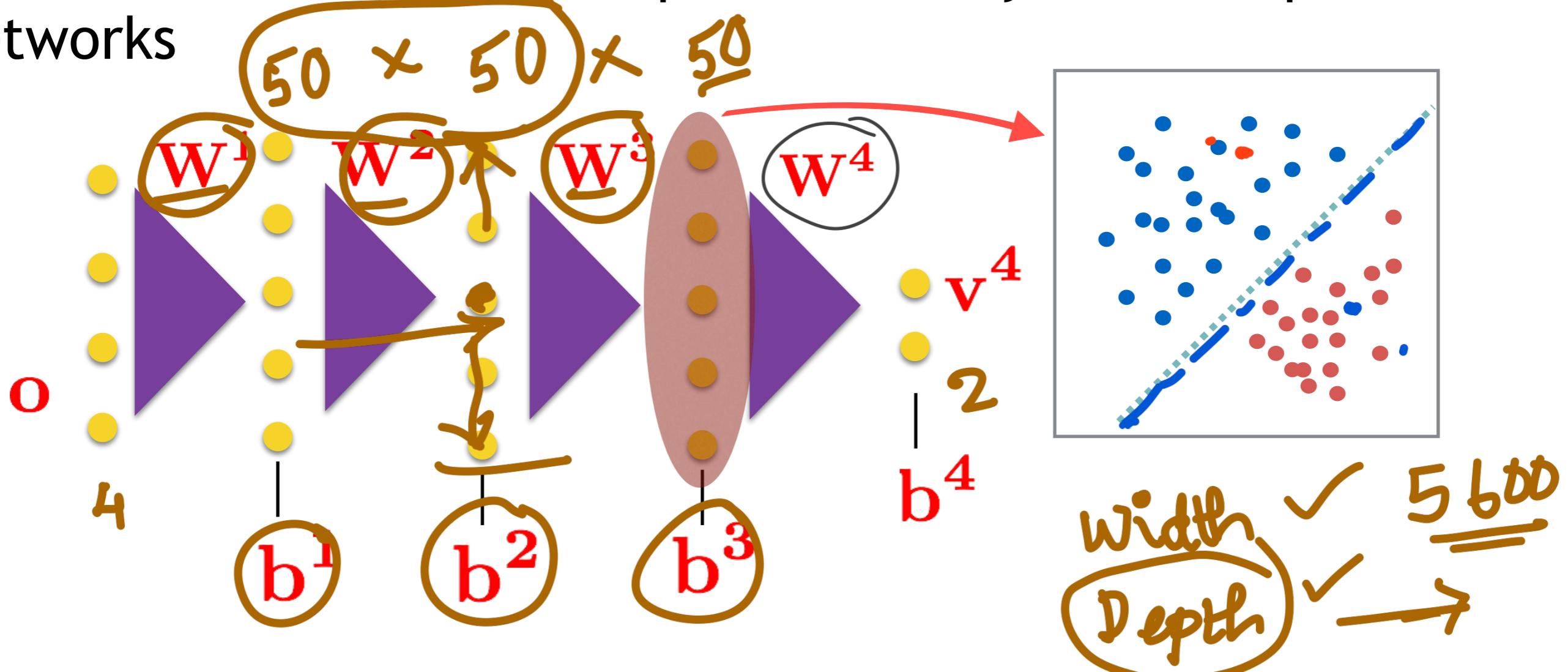
Deep Networks Intuition

Neural networks with multiple hidden layers - Deep networks



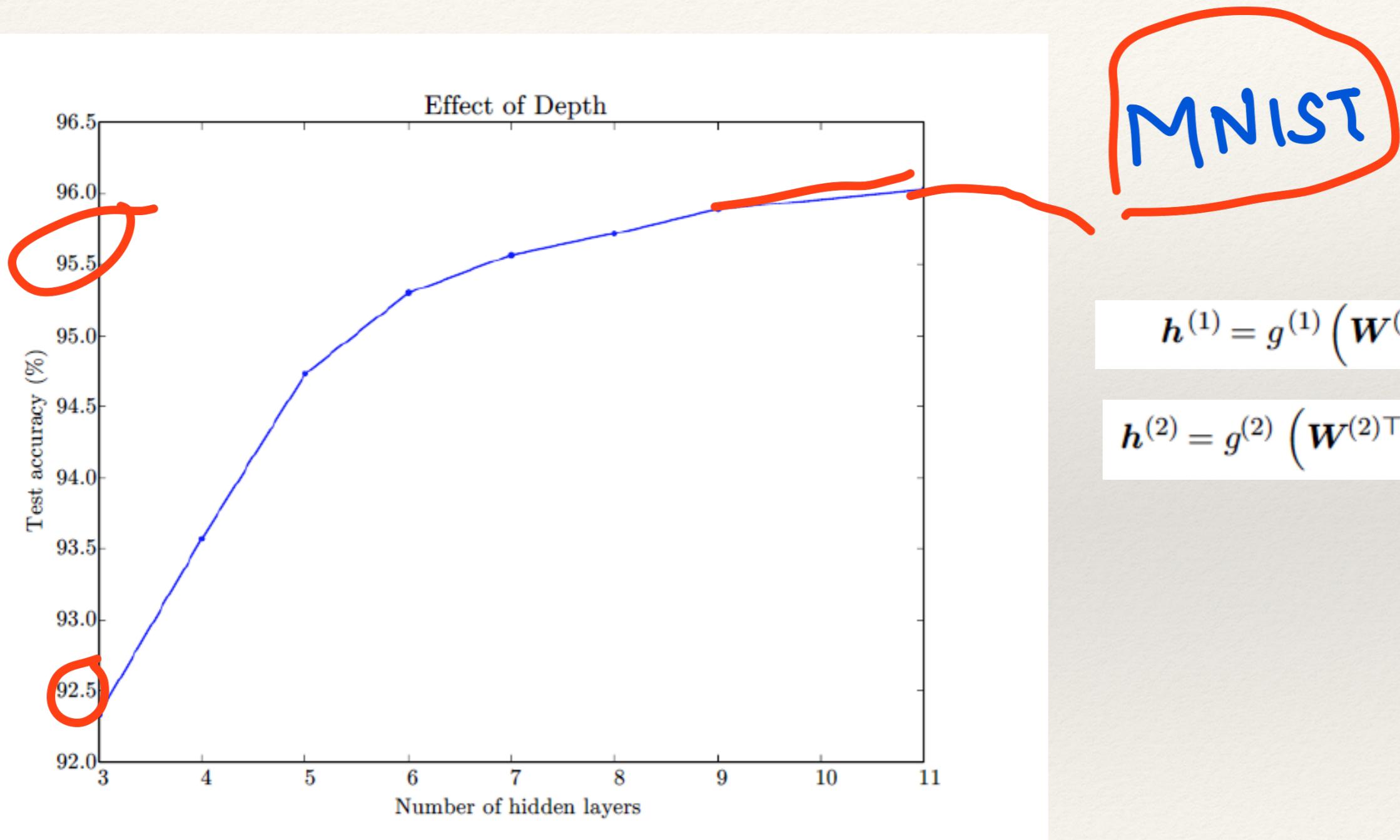
Deep Networks Intuition

Neural networks with multiple hidden layers - Deep networks

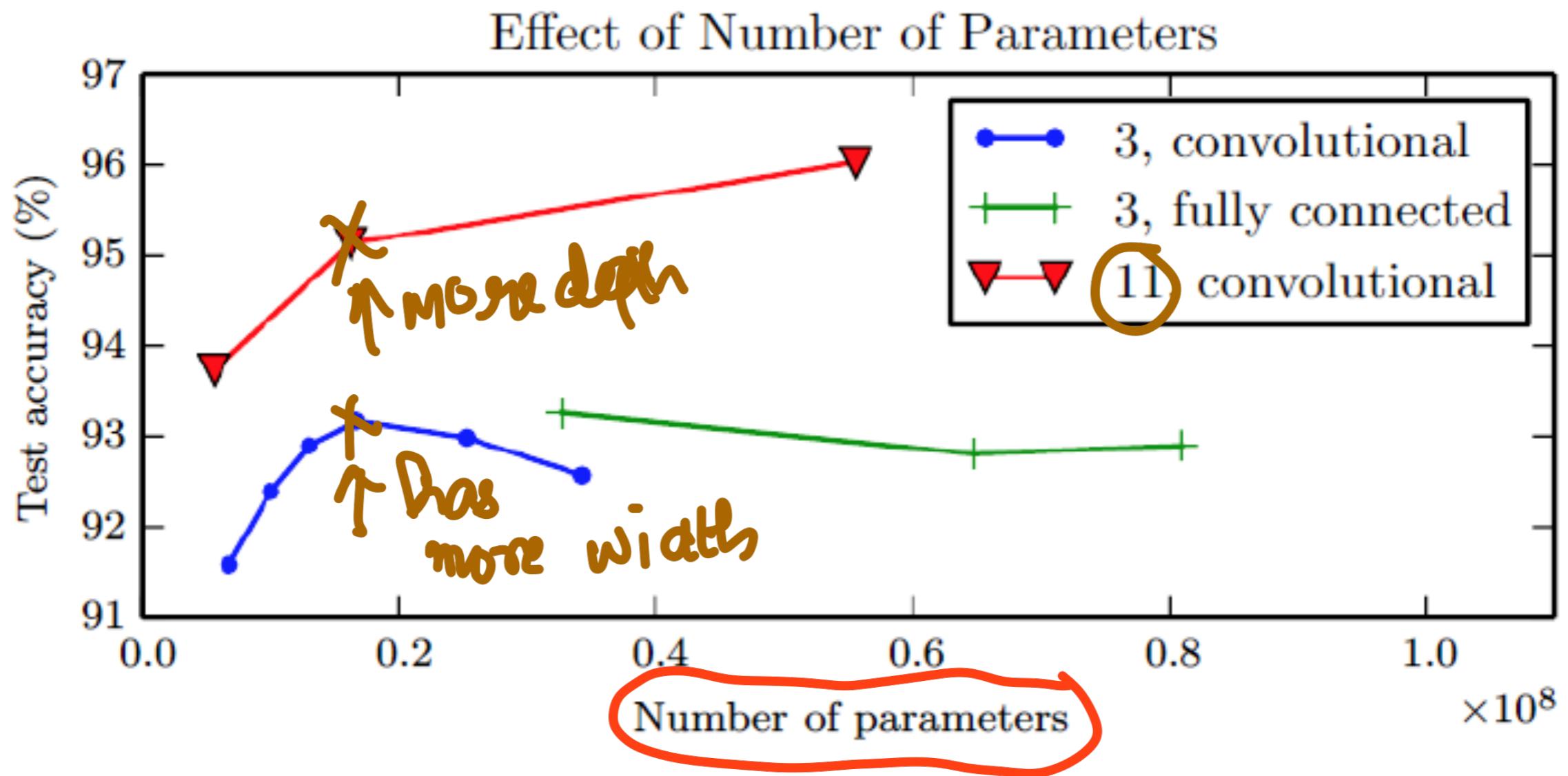


Deep networks perform hierarchical data abstractions which enable the non-linear separation of complex data samples.

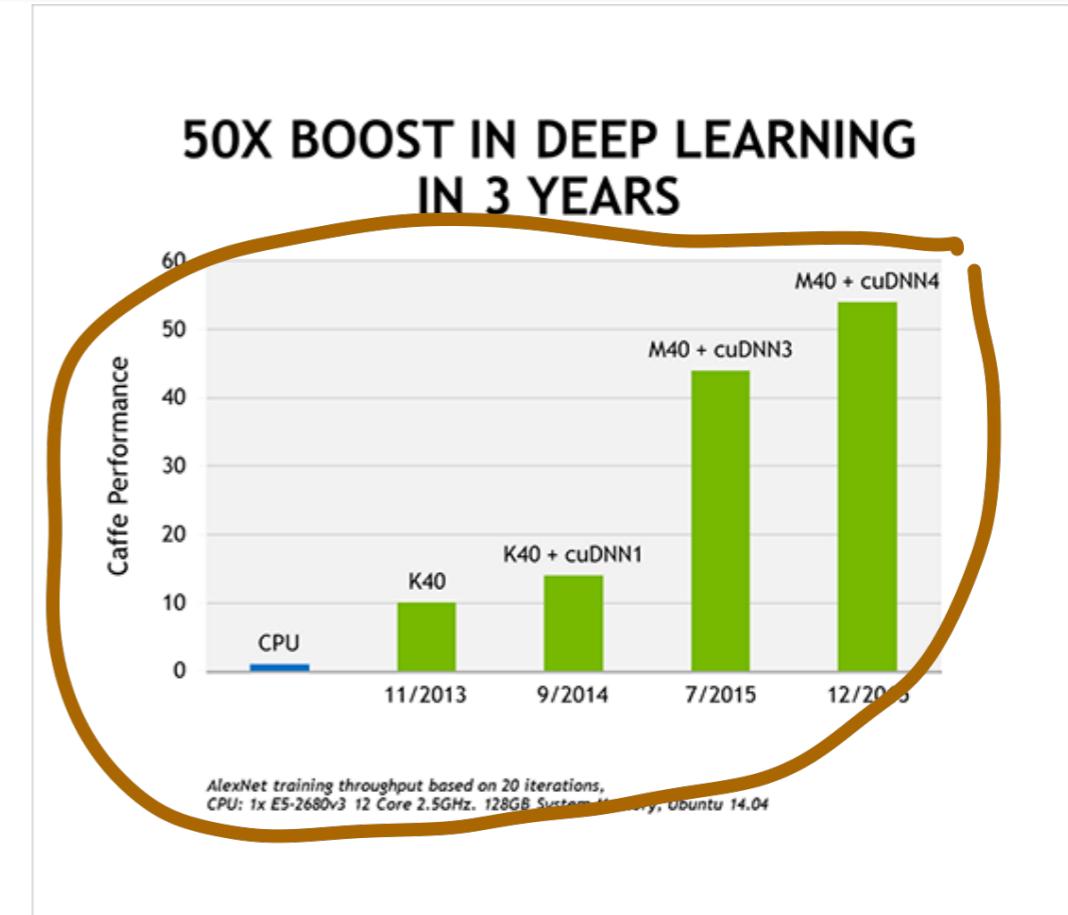
Need for Depth



Need for Depth



Deep Networks



- Are these networks trainable ?
 - Advances in computation and processing
 - **Graphical processing units (GPUs)** performing multiple parallel multiply accumulate operations.
 - Large amounts of supervised data sets

Deep Networks

- Will the networks **generalize** with deep networks

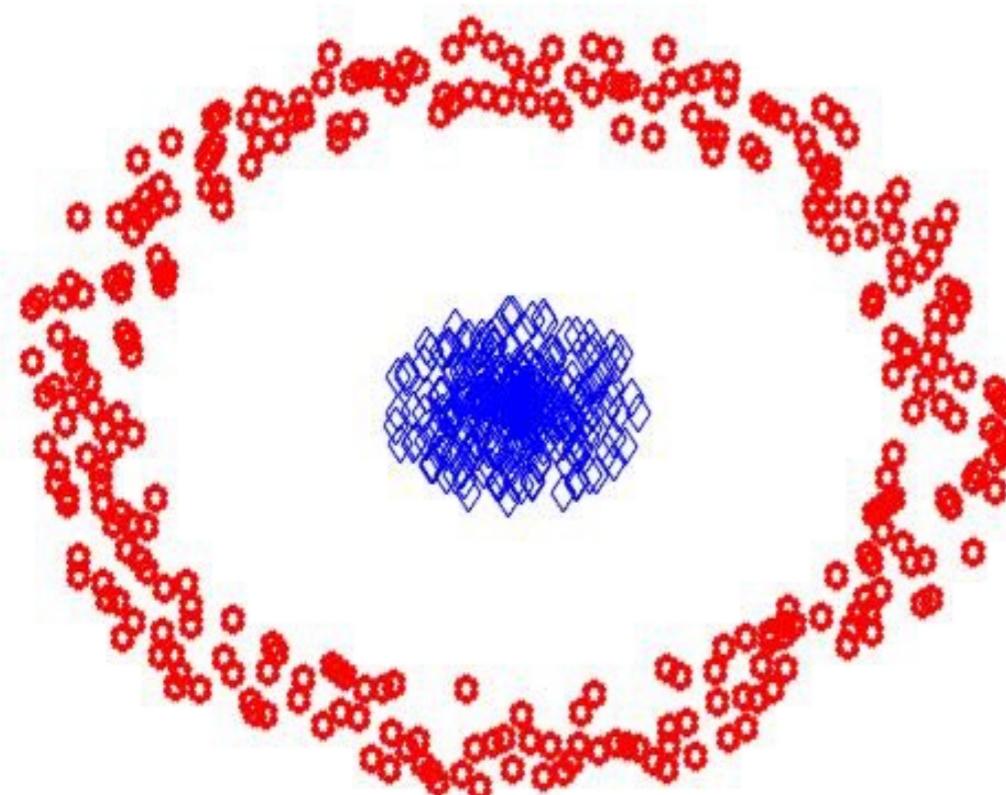
Deviation from training

- DNNs are quite data hungry and performance improves by increasing the data.
- Generalization problem is tackled by providing training data from all possible conditions.
 - Many artificial data augmentation methods have been successfully deployed
 - Providing the **state-of-art** performance in several real world applications.

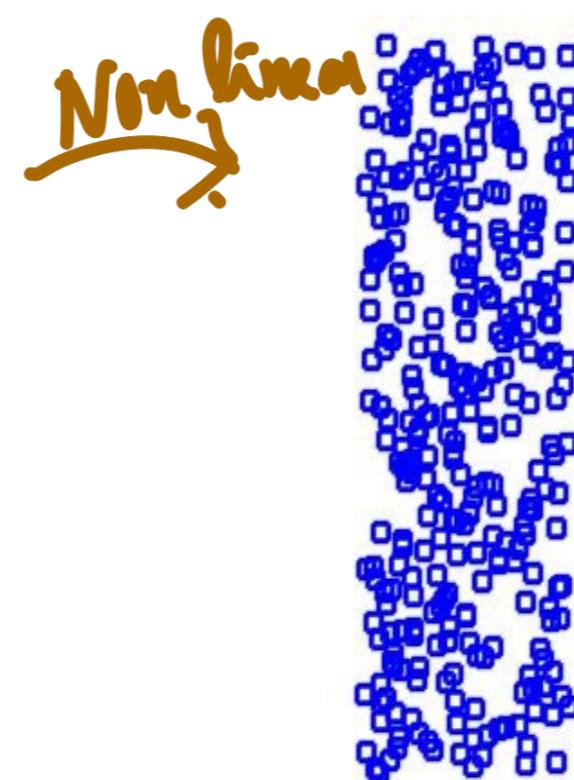
Representation Learning in Deep Networks

- The input data representation is one of most important components of any machine learning system. $\| y - t \|^2$

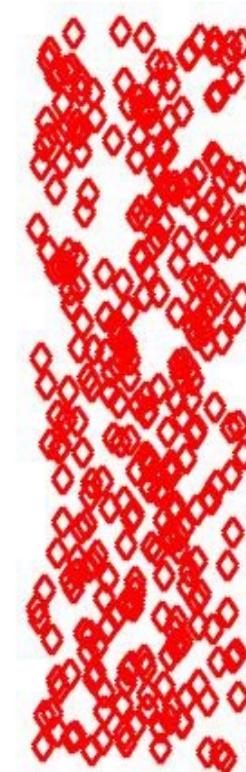
Cartesian Coordinates



Polar Coordinates



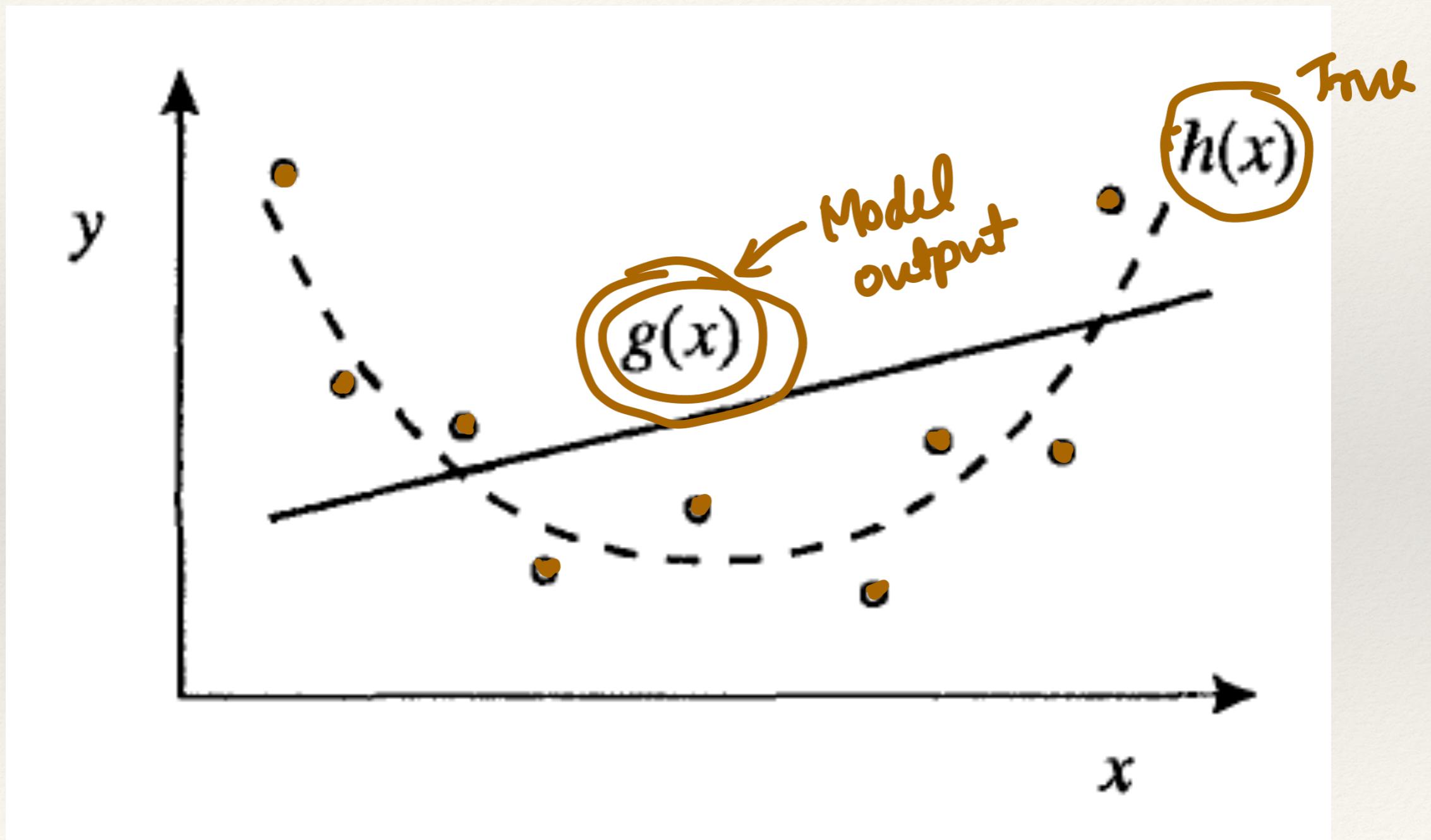
$$\| \log y - \log t \|^2$$



Representation Learning in Deep Networks

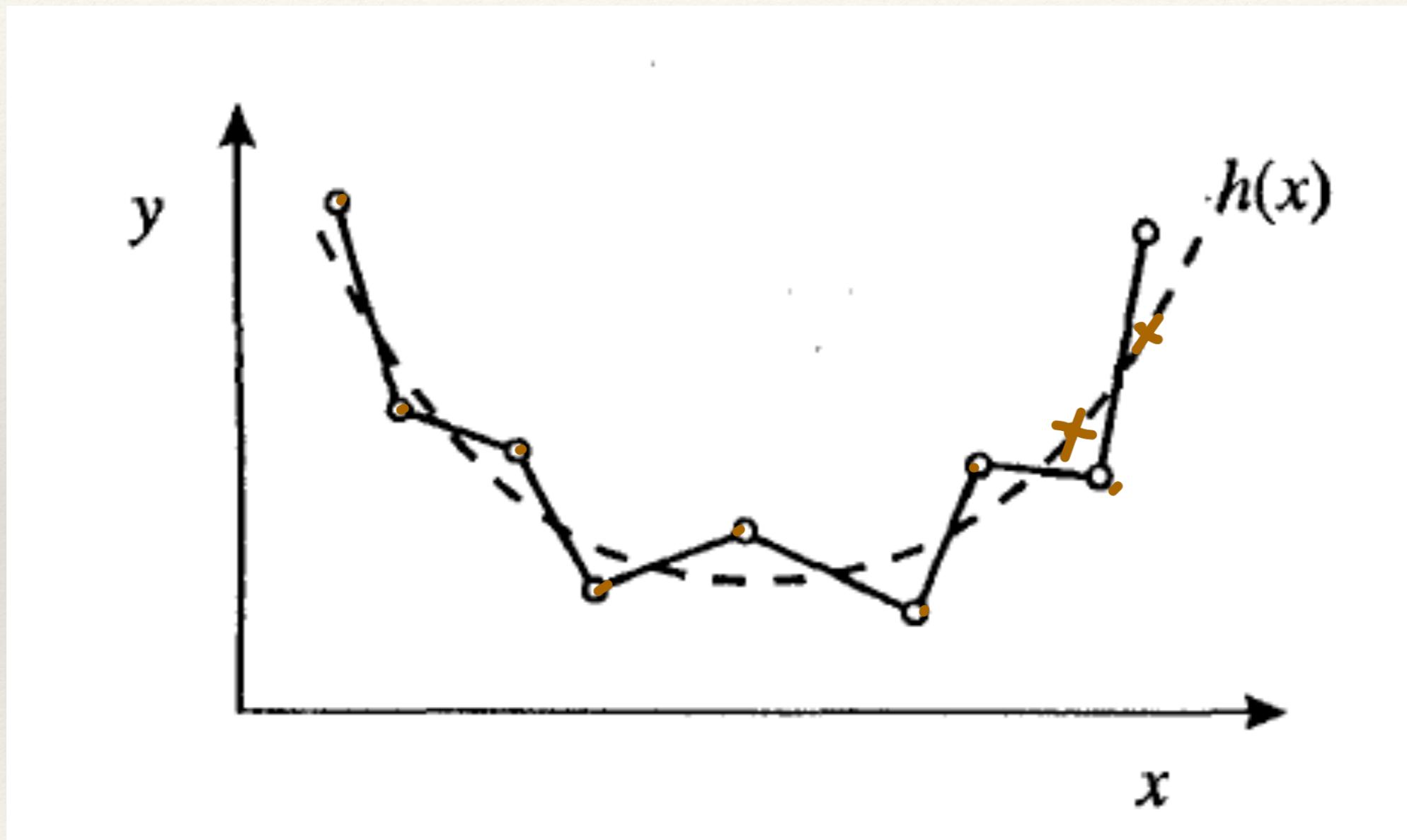
- The input data representation is one of most important components of any machine learning system.
 - Extract factors that enable classification while suppressing factors which are susceptible to noise.
- Finding the right representation for real world applications - substantially challenging.
 - Deep learning solution - build complex representations from simpler representations.
 - The dependencies between these hierarchical representations are refined by the target.

Underfit



Overfit

→ Lack of Generalization.



Avoiding OverFitting In Practice

Regularization

$E_D(w)$ \leftarrow data dependent error function.

Overfitting \leftarrow following training data too closely.

$$\|w\|_2^2 = \sum_i \sum_j (w_{ij}^1)^2 + \sum_i \sum_j (w_{ij}^2)^2$$

Learn patterns

Back propagation $E(w)$ \leftarrow Data independent loss function.

$E(w) = E_D(w) + \lambda E_W(w)$

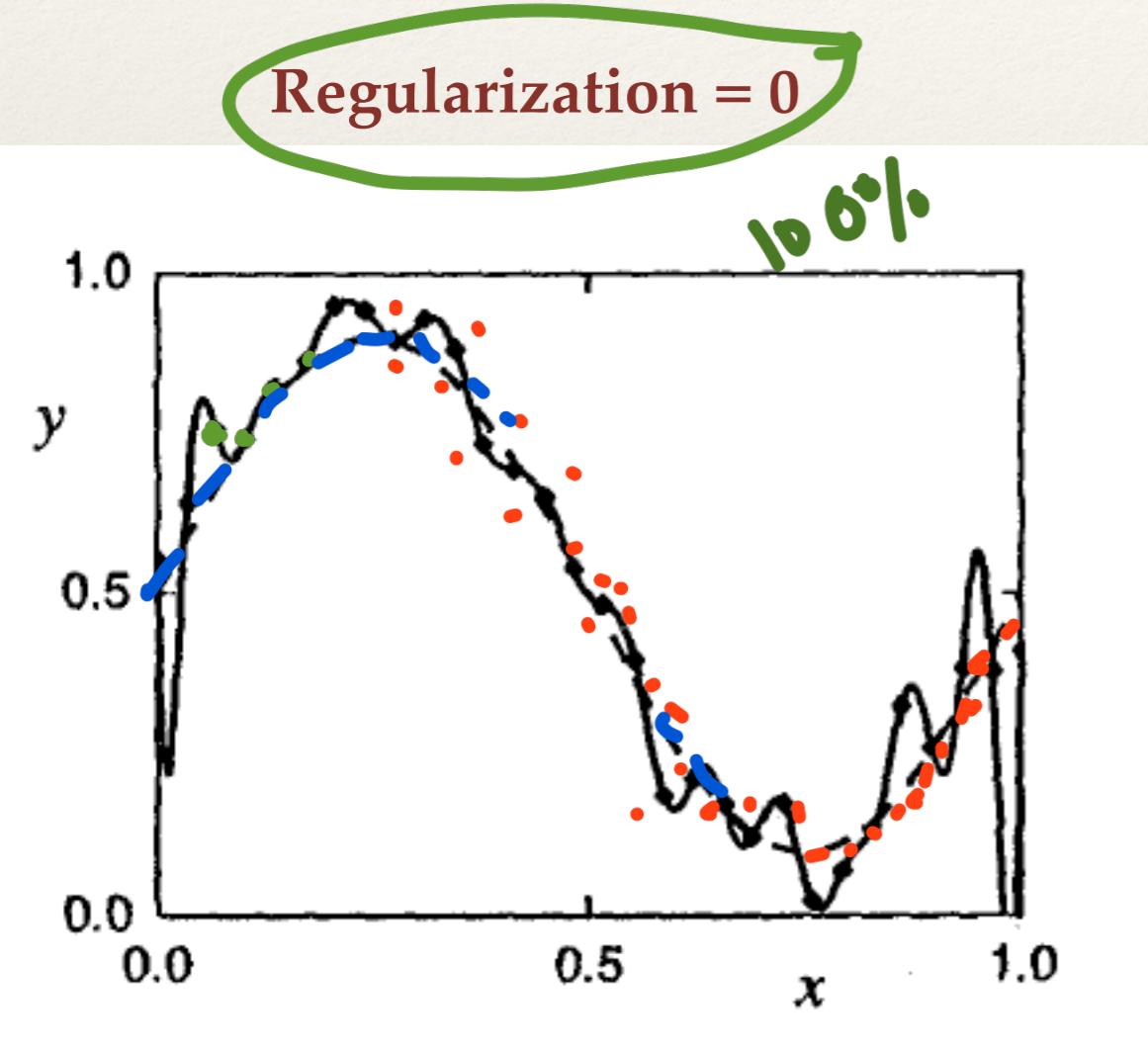
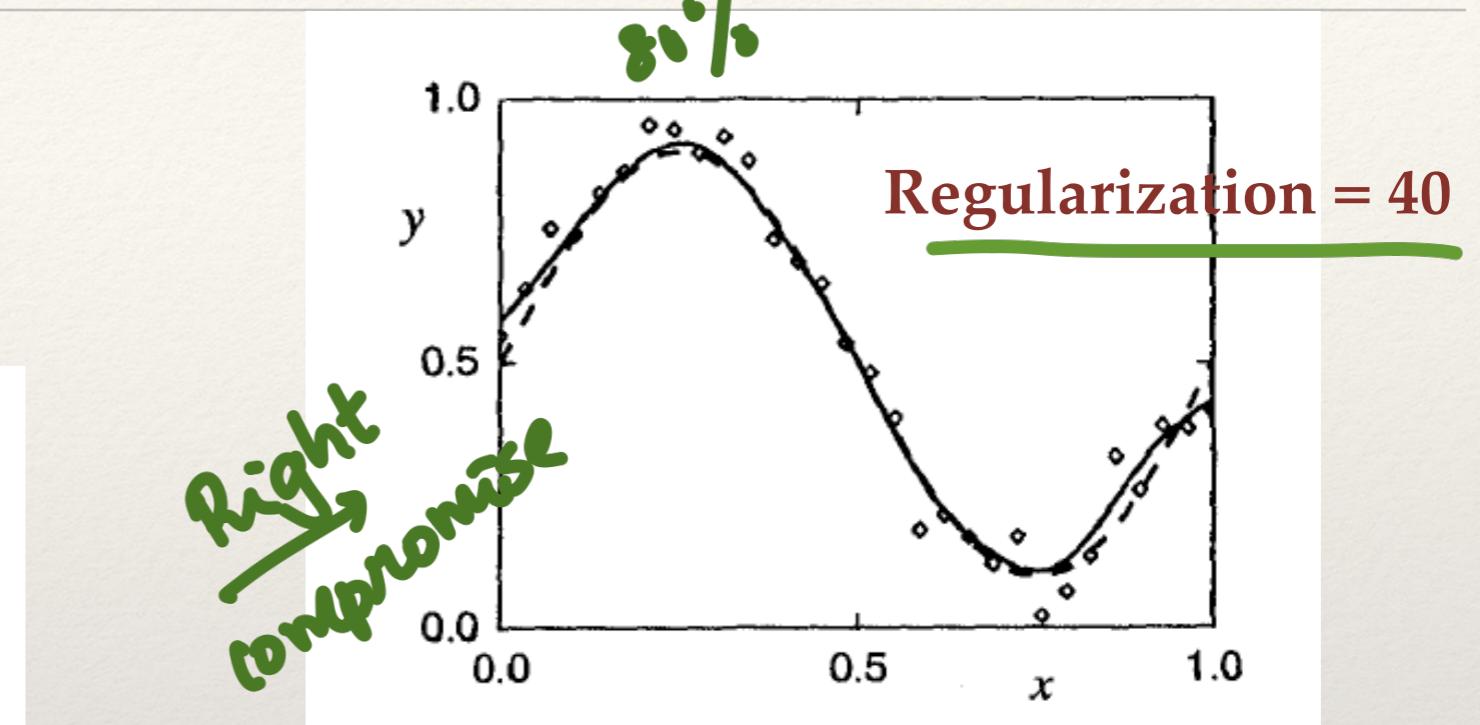
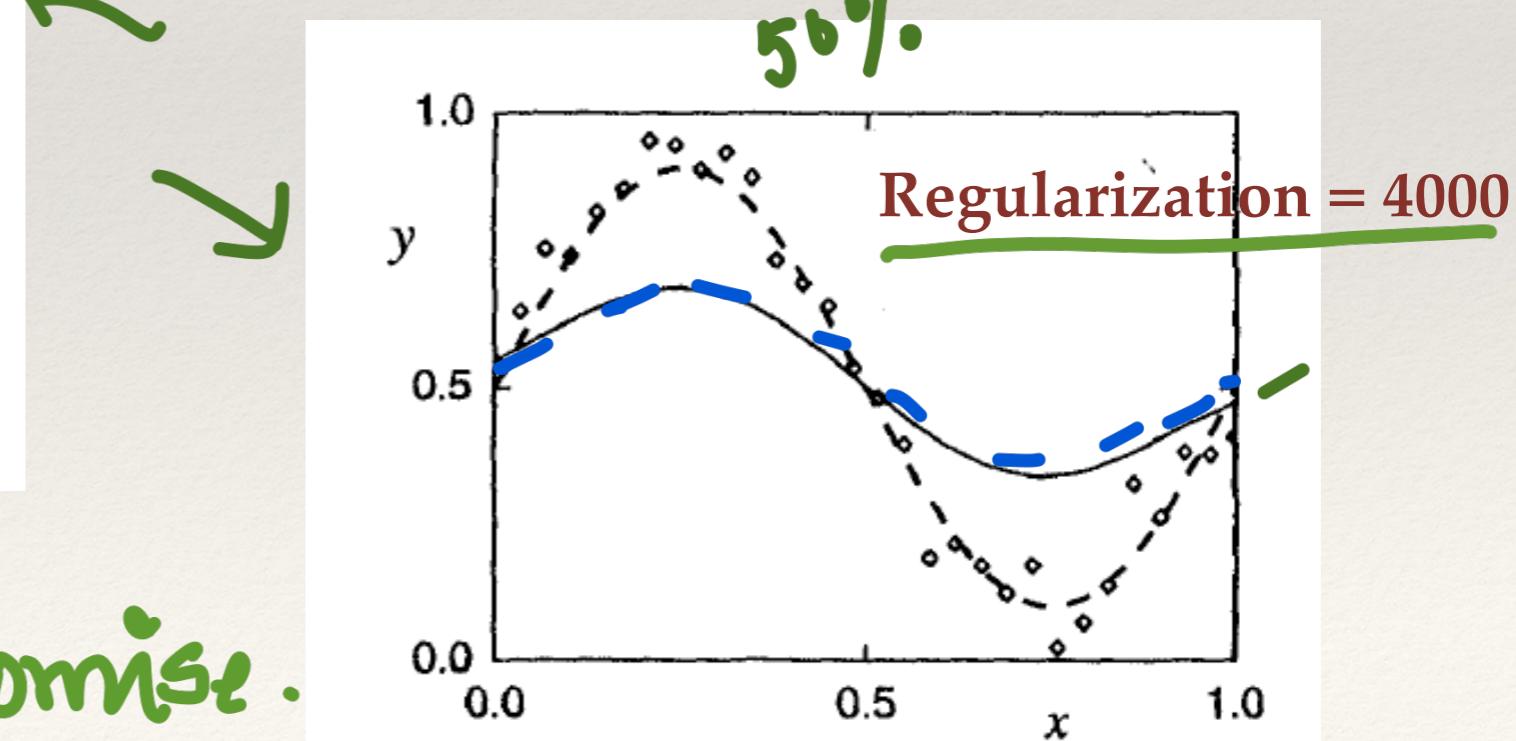
Model dependent regularization Parameter.

λ - small overfitting
 λ - large(underfit)

Weight Decay Regularization

$$E_W(w) = \|w\|_2^2$$

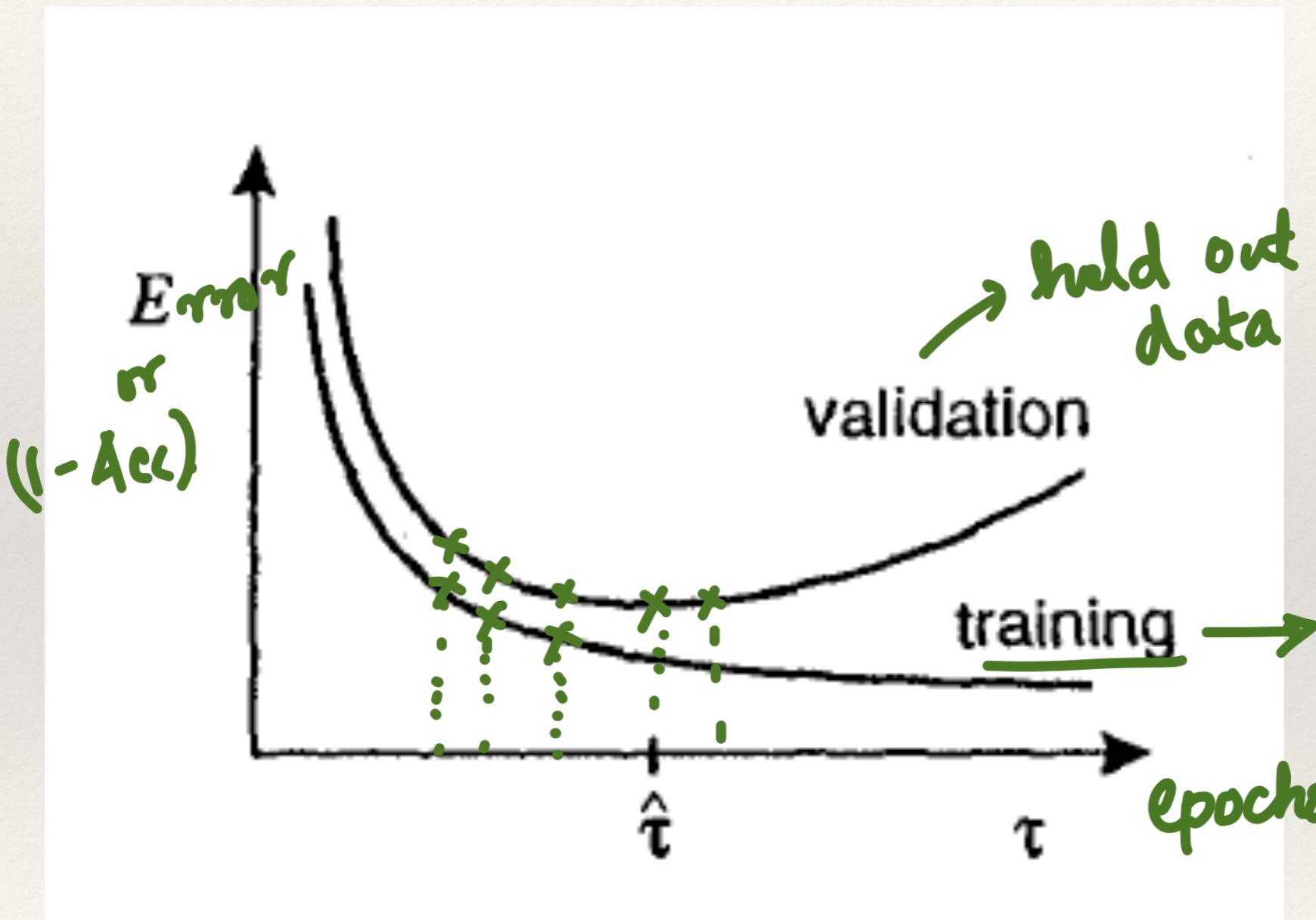
I. Weight Decay Regularization



λ - small number
gives you but compromise.

II.

Early Stopping



Most Popular in Practice

Stop training
when validation
performance
does not improve

III. Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

2015

Sergey Ioffe
Google Inc., sioffe@google.com

Christian Szegedy
Google Inc., szegedy@google.com

Sigmoid as non-linearity (Two layers)

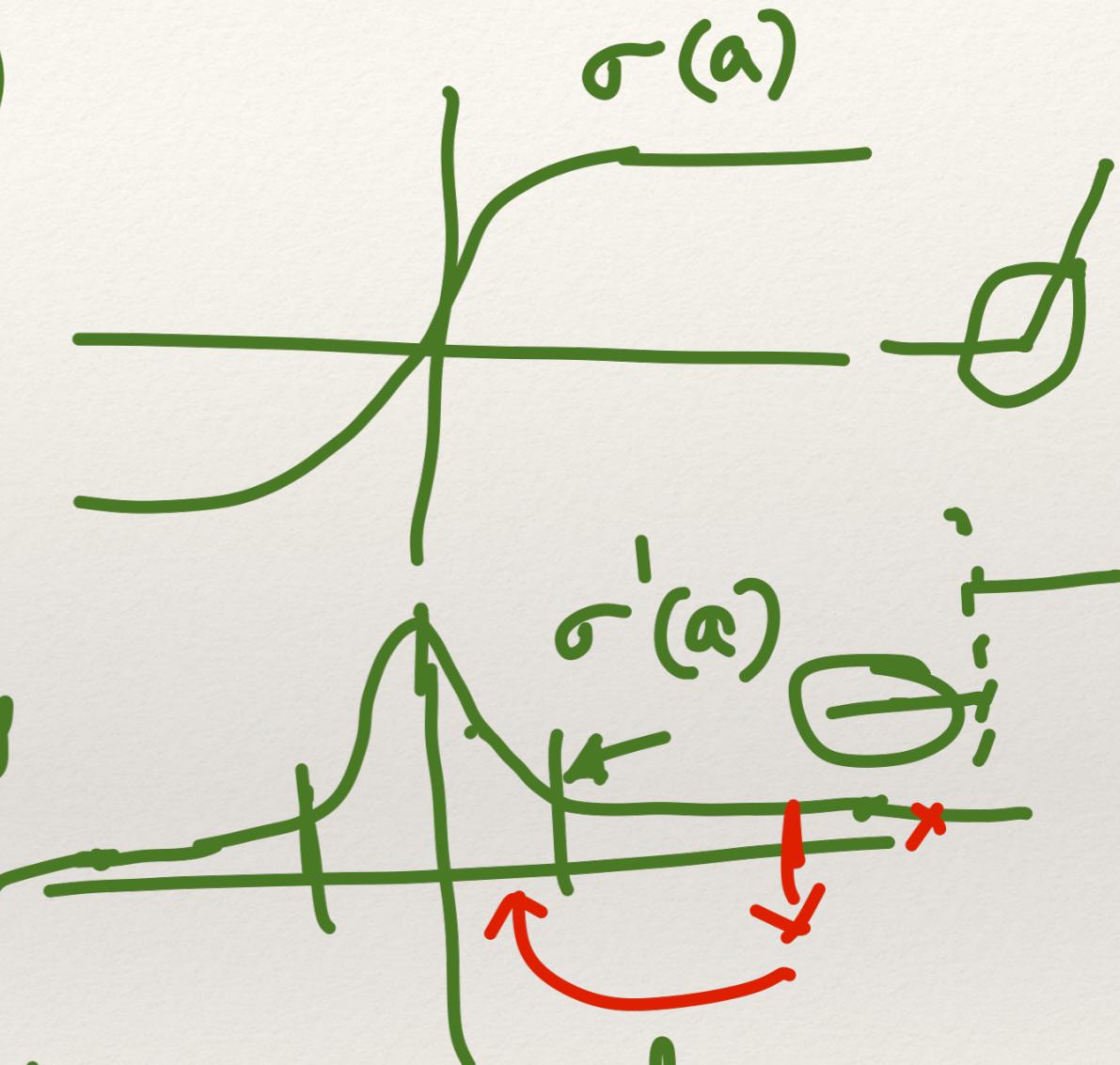
$$h^2 = \underbrace{w^2 \sigma(w^1 x + b^1)}_{z^1} + b^2$$

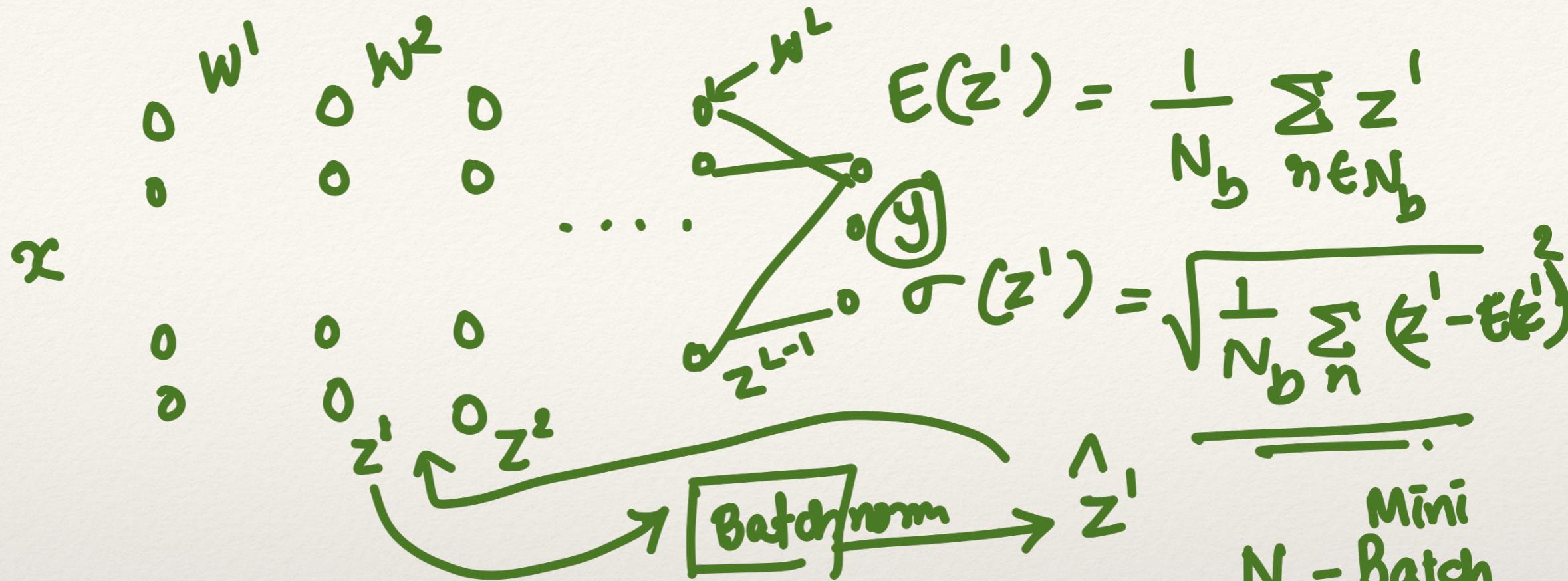
Model saturation if weight values or inputs are very high.

Batch normalization at every layer.

$$\hat{z}^i = \frac{z^i - E(z^i)}{\sigma(z^i)}$$

← This makes each layer output normalized.
(Close to 0, have small variance only).





Can be done at every layer.

- * higher learning rate
- * Reduced number of epochs

Mini
Batch
size

should be
 $O(10^2)$

Effect of Batch Normalization

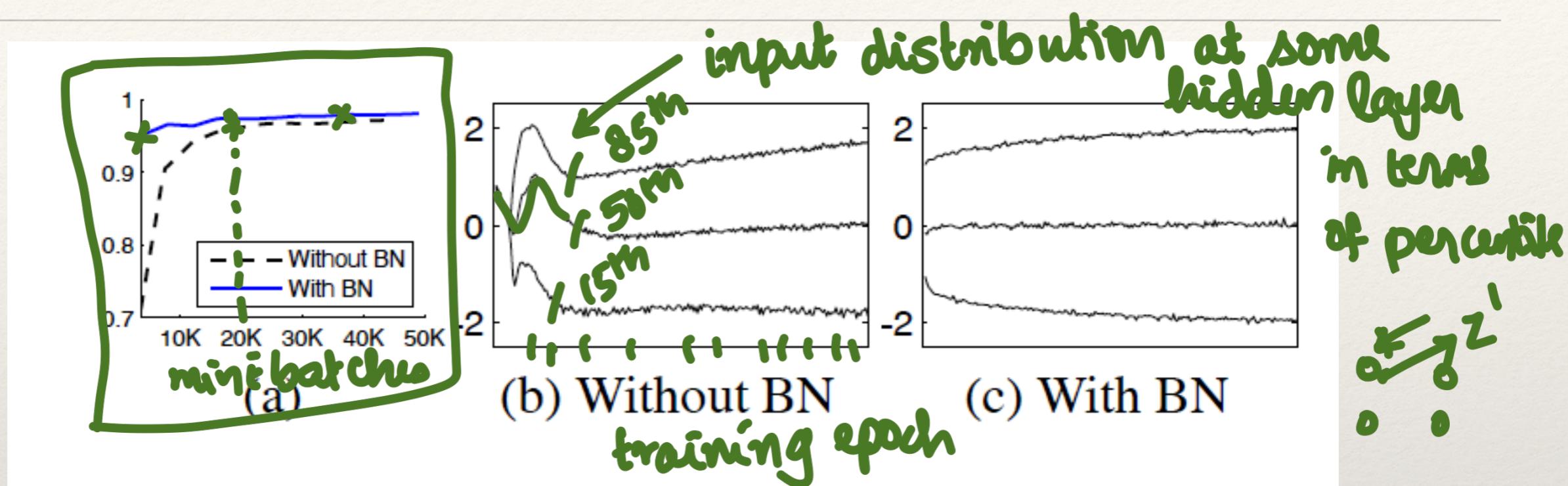


Figure 1: (a) The test accuracy of the MNIST network trained with and without Batch Normalization, vs. the number of training steps. Batch Normalization helps the network train faster and achieve higher accuracy. (b, c) The evolution of input distributions to a typical sigmoid, over the course of training, shown as $\{15, 50, 85\}$ th percentiles. Batch Normalization makes the distribution more stable and reduces the internal covariate shift.

IV. Dropout Strategy in Neural Network Training

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Nitish Srivastava

Geoffrey Hinton

Alex Krizhevsky

Ilya Sutskever

Ruslan Salakhutdinov

Department of Computer Science

University of Toronto

10 Kings College Road, Rm 3302

Toronto, Ontario, M5S 3G4, Canada.

Editor: Yoshua Bengio

NITISH@CS.TORONTO.EDU

HINTON@CS.TORONTO.EDU

KRIZ@CS.TORONTO.EDU

ILYA@CS.TORONTO.EDU

RSALAKHU@CS.TORONTO.EDU

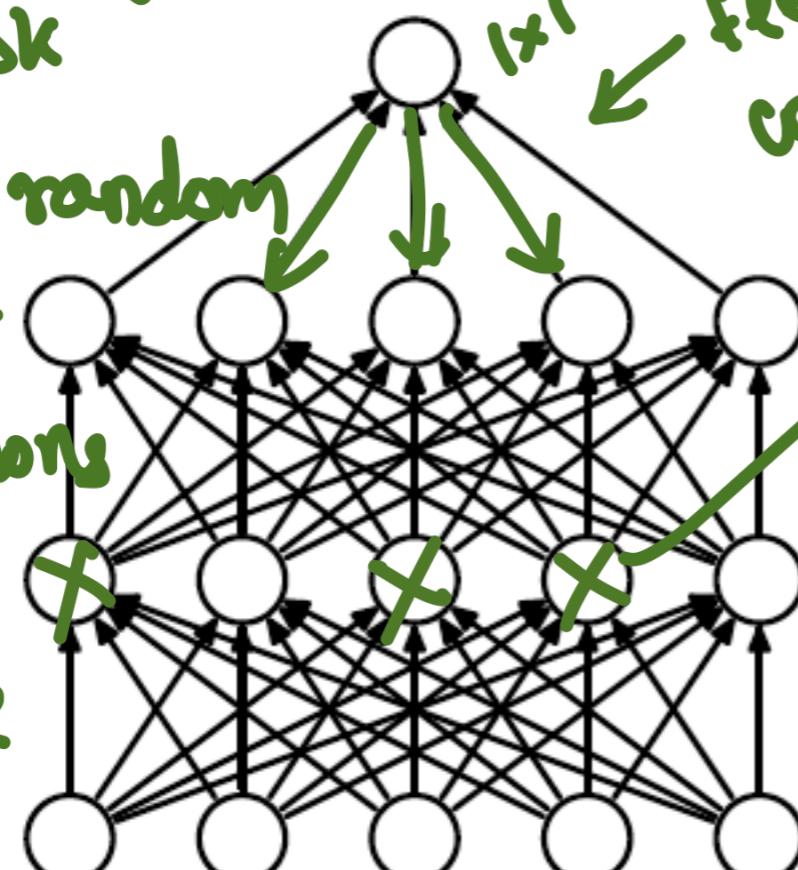
2013

Dropouts in Neural Networks

* Nodes (neurons) are too high to perform task

* Any random subset of neurons should still be able to predict of

(a) Standard Neural Net



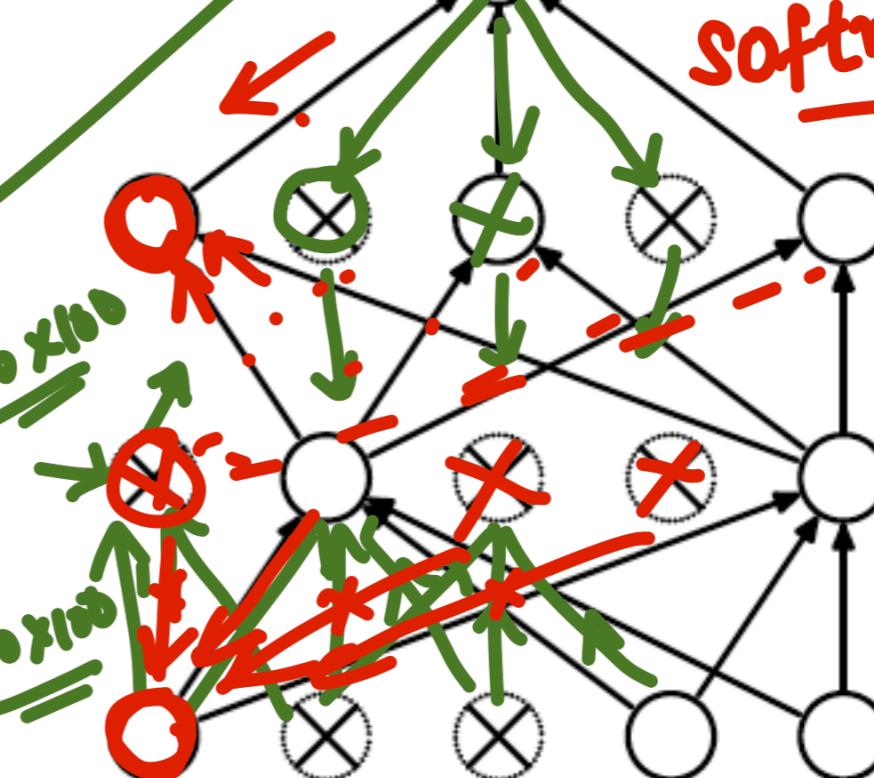
feed forward connection

$$W_1 \underset{100 \times 100}{=} \begin{bmatrix} \dots \end{bmatrix}$$

$$W_2 \underset{100 \times 1}{=} \begin{bmatrix} \dots \end{bmatrix}$$

Probability of switching it off

softmax

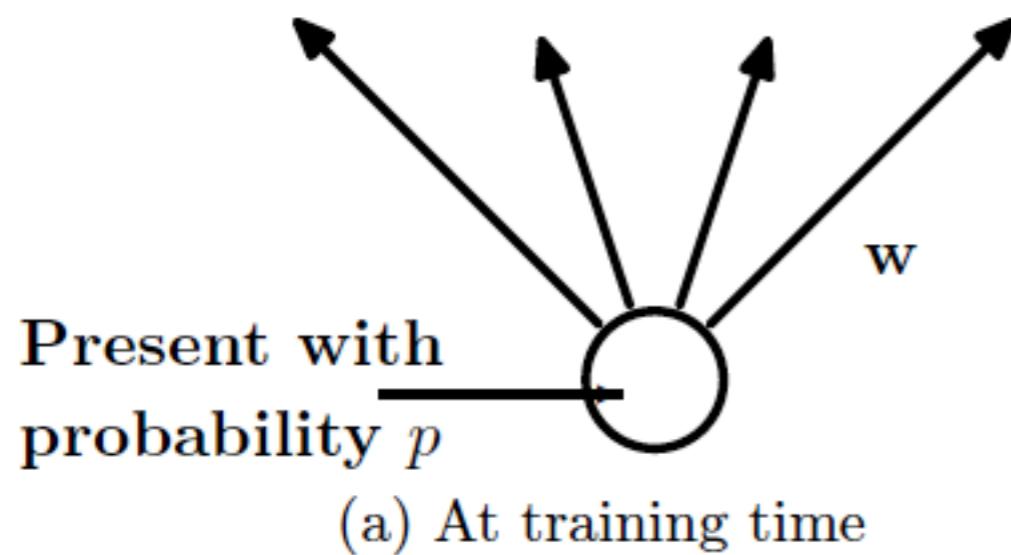
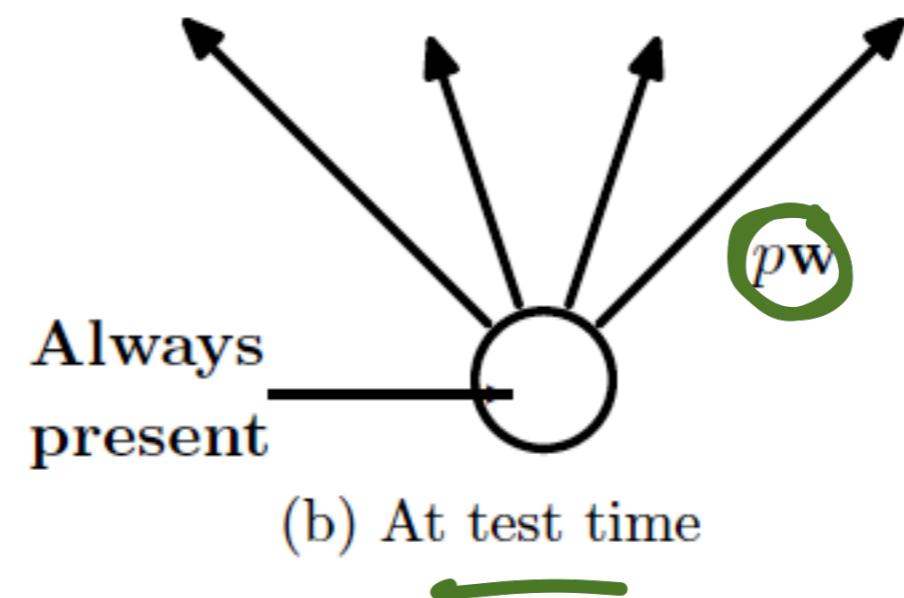


(b) After applying dropout.

Fixed Dropout probability

(Sparsity)

Dropout in Training and Test



Consistent o/p
in testing

Dropout Application

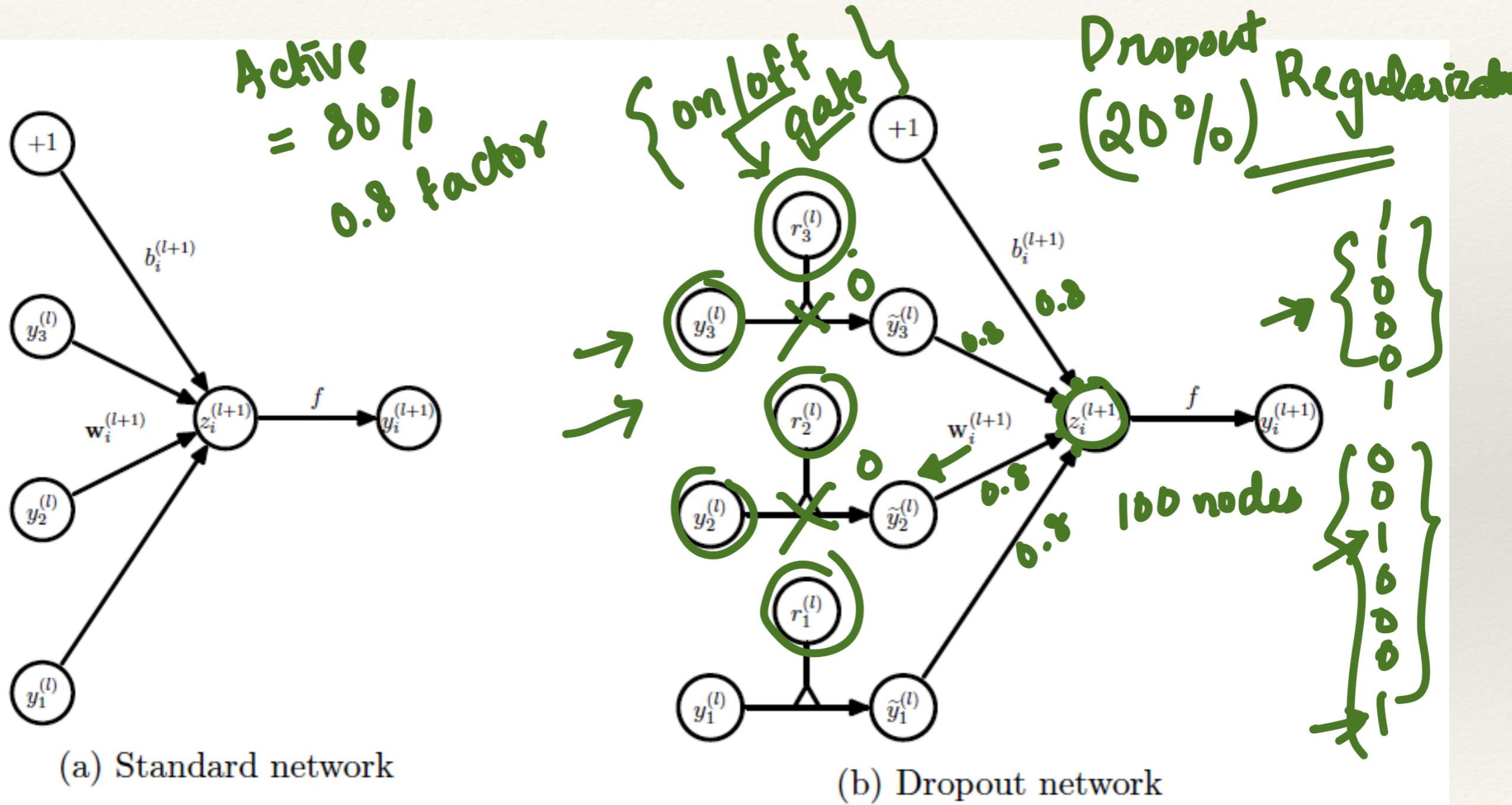


Figure 3: Comparison of the basic operations of a standard and dropout network.

Effect of Dropouts

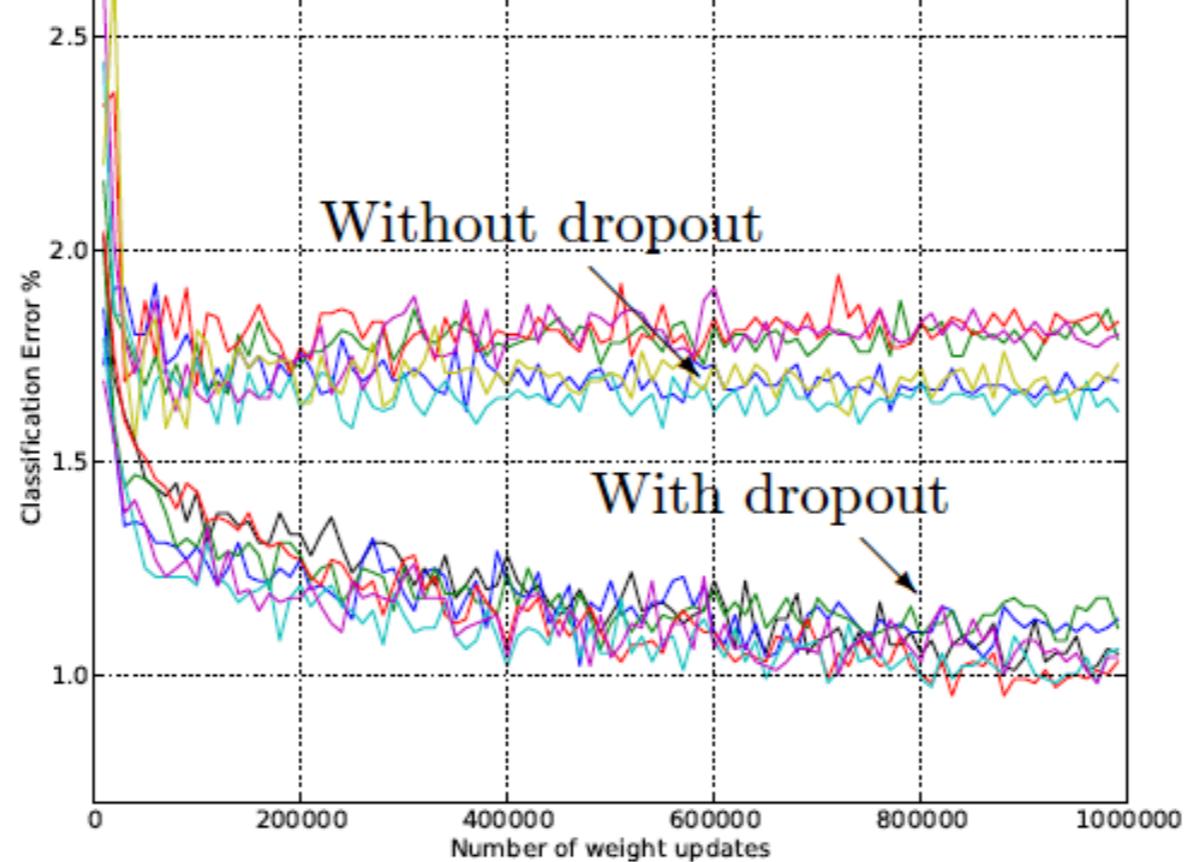
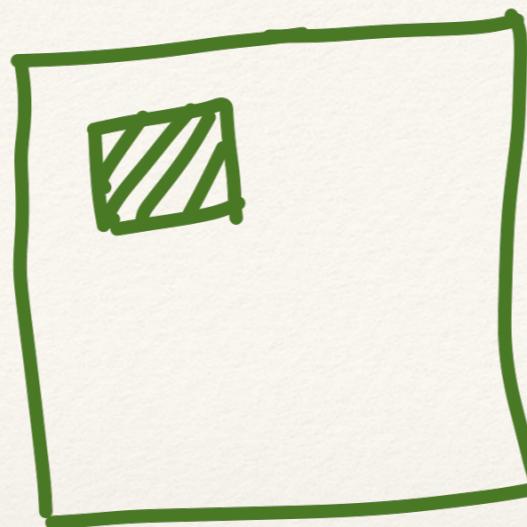


Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Convolutional Neural Networks

CNNs



\sqrt{s}

2-D patterns

↓ can I also have weights which are 2-D. and local. [process parts of Image].

Convolution

$y(i, j)$

Operations

$$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1}$$

$$x(i+m, j+n)$$

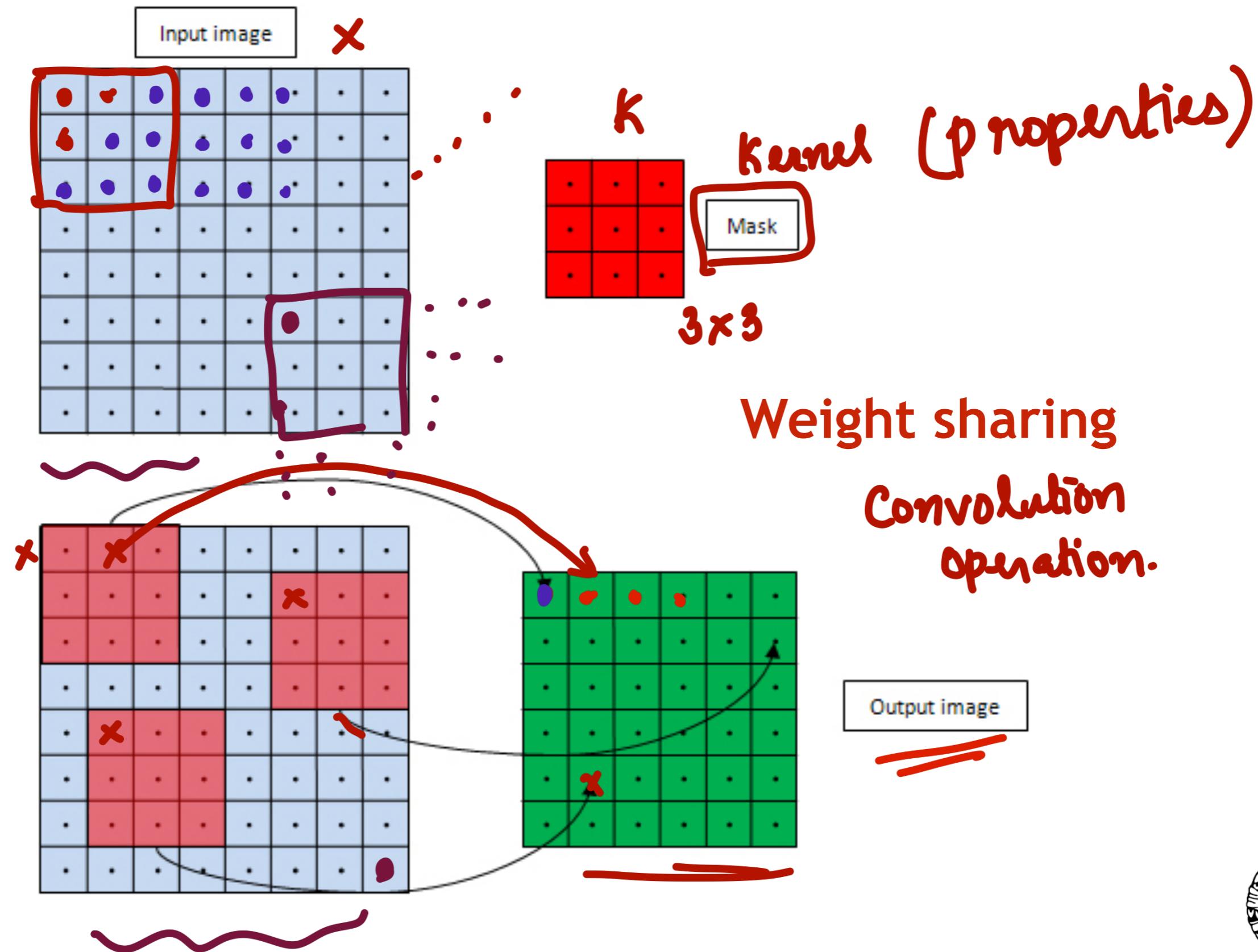
$$K^p(m, n)$$

$$p=1 \dots P$$

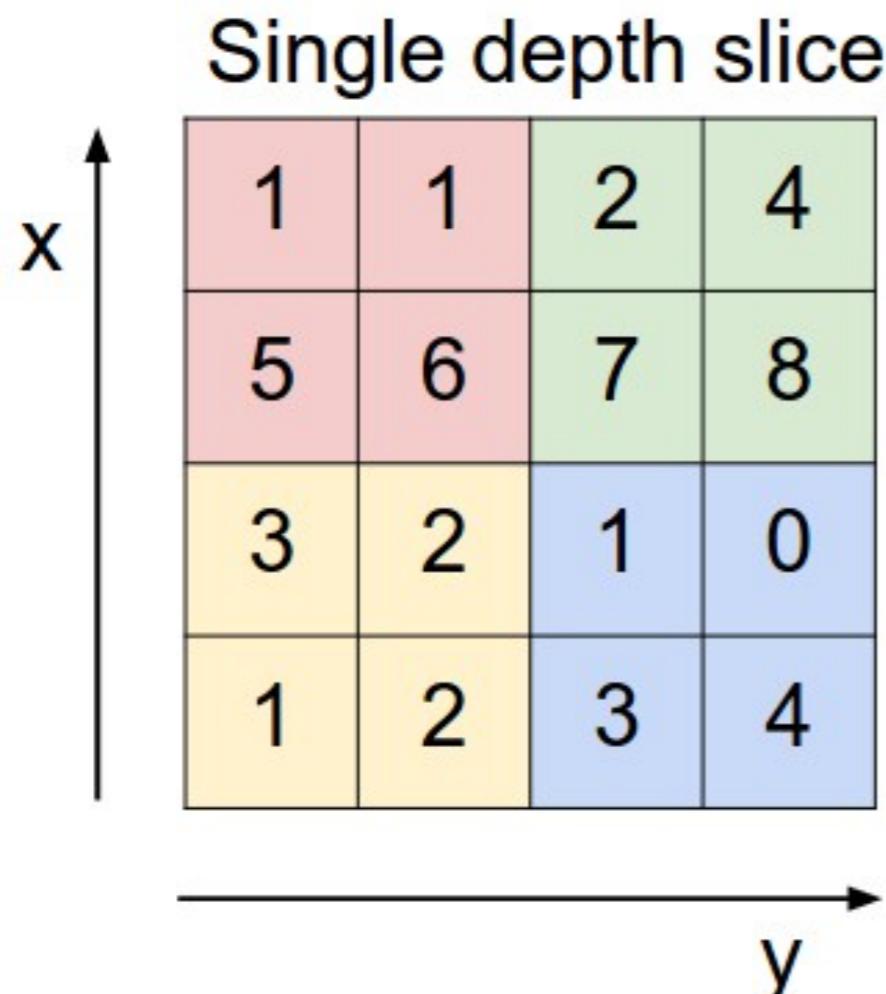
Learnable parameter

DNN

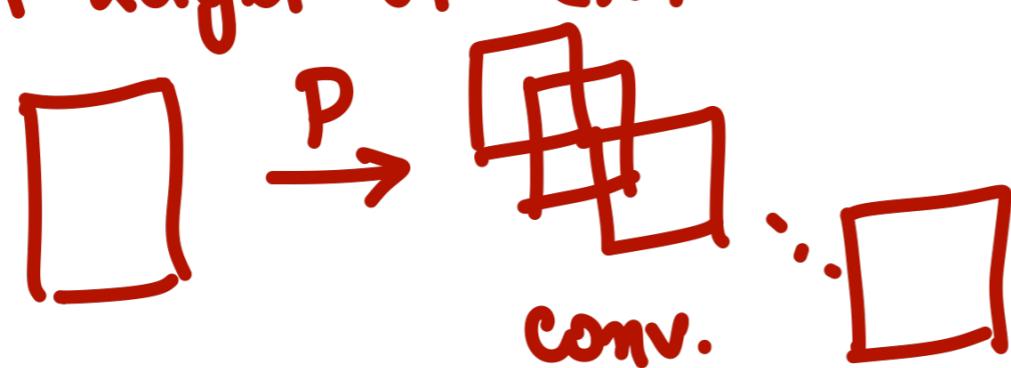
Other Architectures - Convolution Operation



Max Pooling Operation



A layer of CNN



Pooling

Max-pooling

max pool with 2x2 filters
and stride 2

2x2

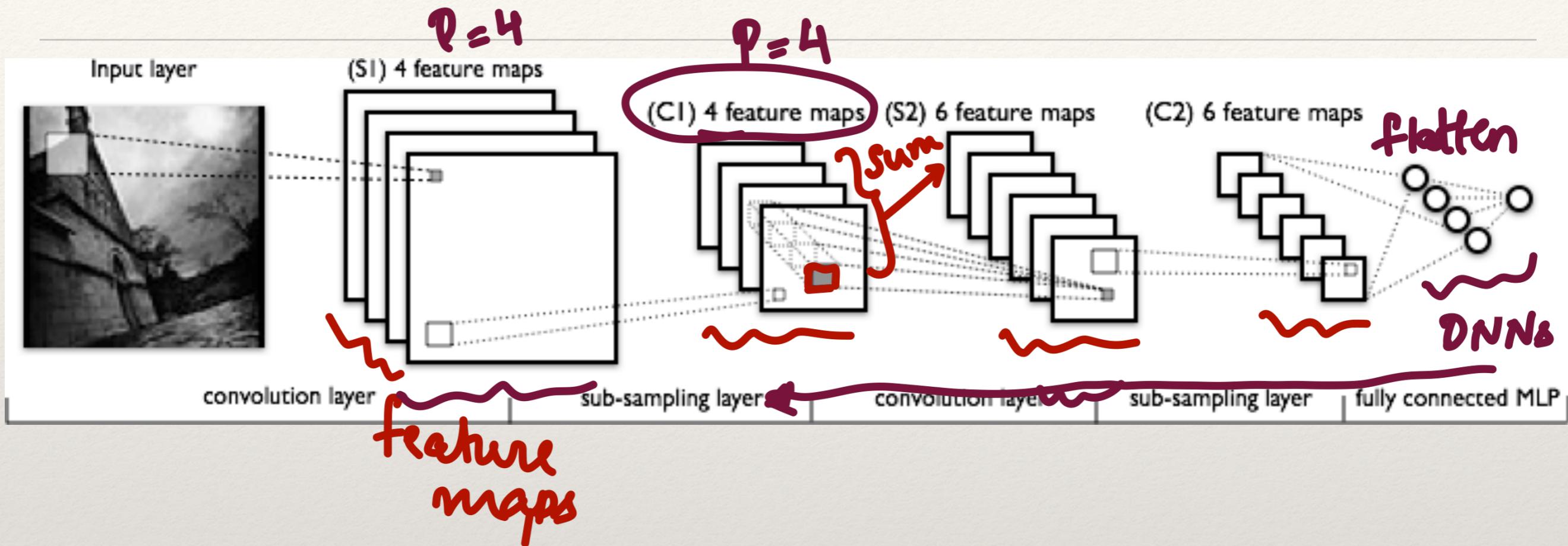
6	8
3	4

Sub-sampling

Non-linear

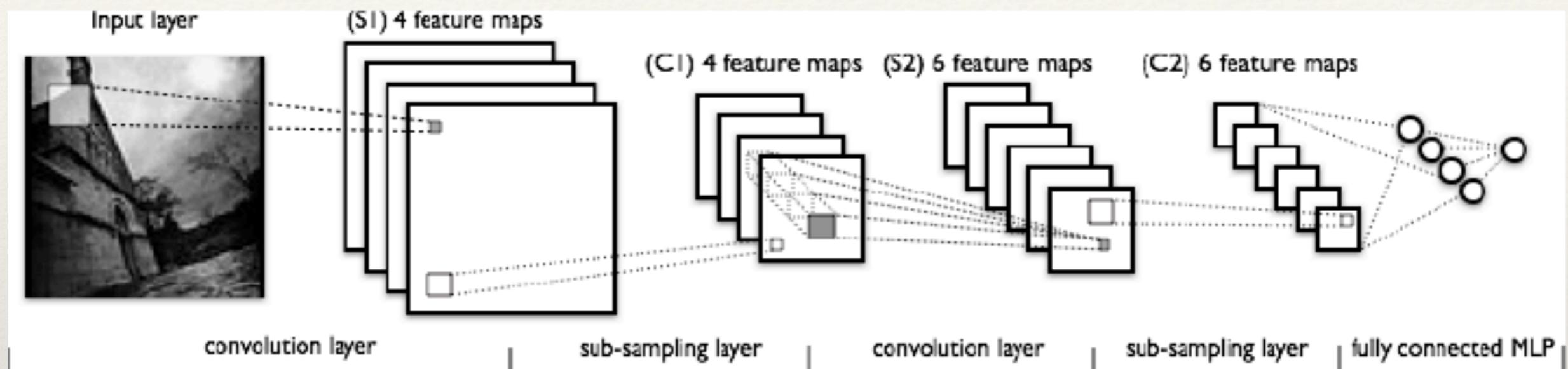
Subsamp

Convolutional Neural Networks



- Multiple levels of filtering and subsampling operations.
- Feature maps are generated at every layer.

Convolutional Neural Networks

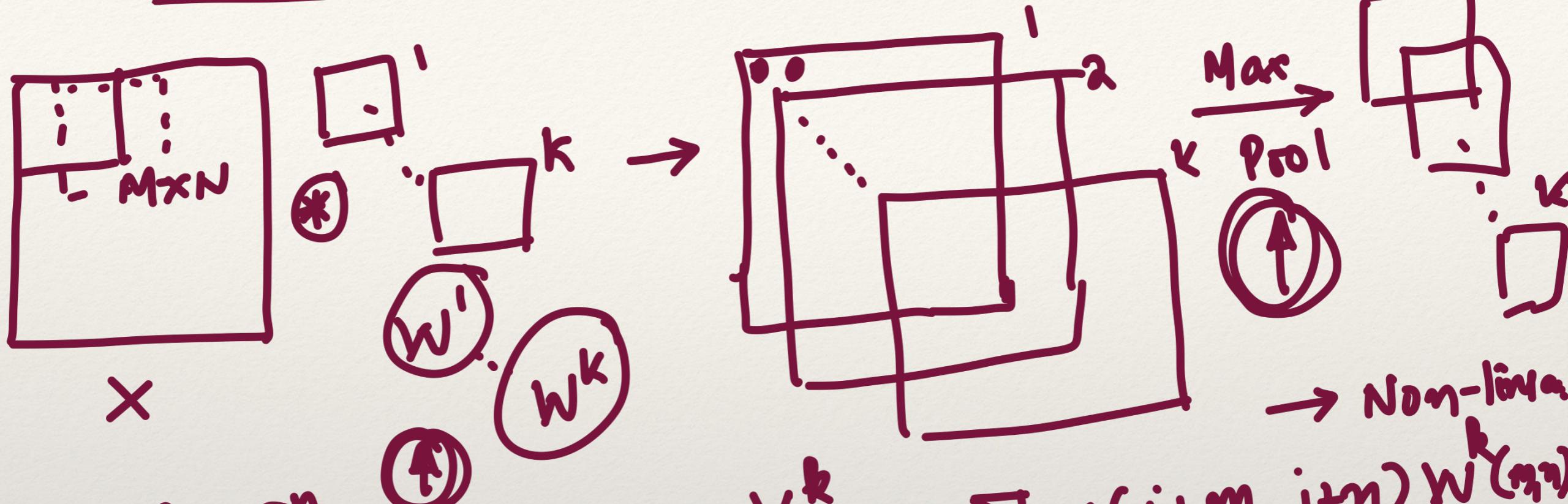


- Multiple levels of filtering and subsampling operations.
- Feature maps are generated at every layer.

Back Propagation in CNNs

2-D CNN

(Convolution)



$$E = \sum_n E \left[t_n^* \cdot y_n \right]$$

$$\frac{\partial E}{\partial w^k}$$

$$X \in \mathbb{R}^{D_1 \times D_2}$$

If no padding

$$\frac{\partial E}{\partial y^k} \quad \frac{\partial E}{\partial w^k} \quad \frac{\partial E}{\partial w^k} \equiv \sum_{m,n} x(i+m, j+n) w^k(m, n)$$

$$y^k \in \mathbb{R}^{D_1 \times D_2}$$

$$y^k[0,0] = \underbrace{x[0,0]}_{\text{Convolution}} \underbrace{w^k[0,0]}_{\text{Weight}} + \underbrace{x[0,1]}_{\text{Bias}} w^k[0,1] + \dots + x[N,0] w^k[N,0] + \dots + x[N,N] w^k[N,N]$$

$$y^k[0,1] = \underbrace{x[0,1]}_{\text{Convolution}} \underbrace{w^k[0,0]}_{\text{Weight}} + \dots + x[N,N] w^k[N,N] + x[1,0] w^k[1,0] + \dots + x[M+1,N] w^k[M+1,N]$$

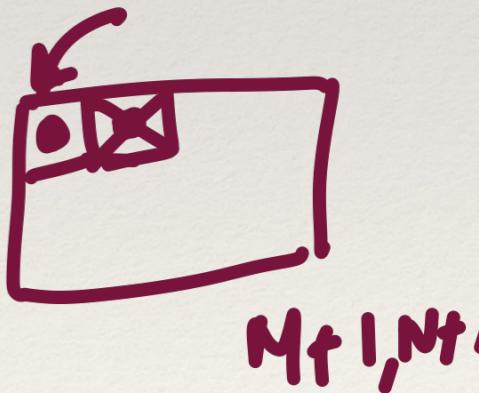
$$\vdots$$

scalar

$$\left[\begin{array}{c} \frac{\partial E}{\partial y^k} \\ \hline \end{array} \right]_N = (D_1 - M, D_2 - N) \rightarrow \left[\begin{array}{c} \frac{\partial E}{\partial w^k} \\ \hline \end{array} \right]_{M+1, N+1} \parallel$$

w^k

$M+1, N+1$



$$\frac{\partial \mathcal{E}}{\partial w^k[0,0]} = x[0,0] \cdot \frac{\partial \mathcal{E}}{\partial y^k[0,0]} + \dots + x[D_1-M, D_2-N] \cdot \frac{\partial \mathcal{E}}{\partial y^k[D_1-M, D_2-N]}$$

*

$$\frac{\partial \mathcal{E}}{\partial w^k[0,1]} = x[0,1] \cdot \frac{\partial \mathcal{E}}{\partial y^k[0,0]} + \dots + x[D_1-M, D_2-N+1] \cdot \frac{\partial \mathcal{E}}{\partial y^k[D_1-M, D_2-N]}$$

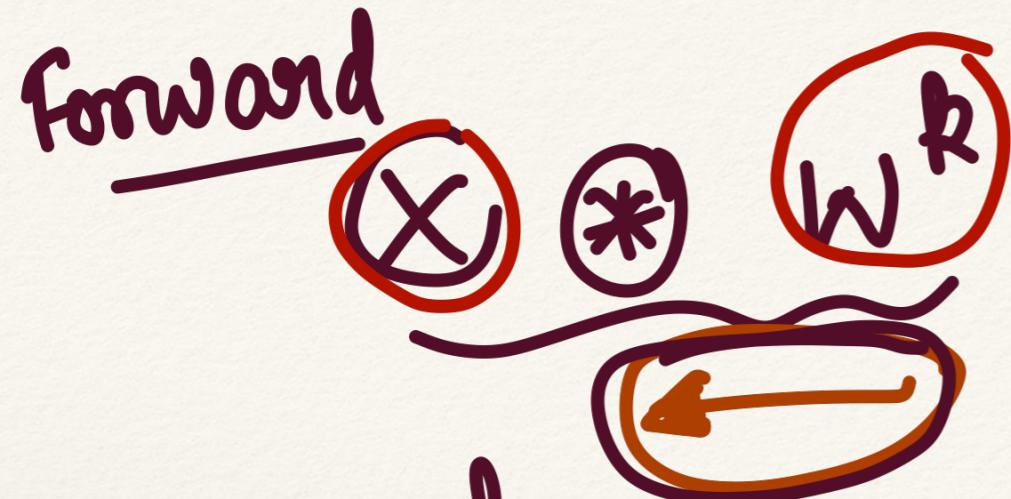
⋮

M, N

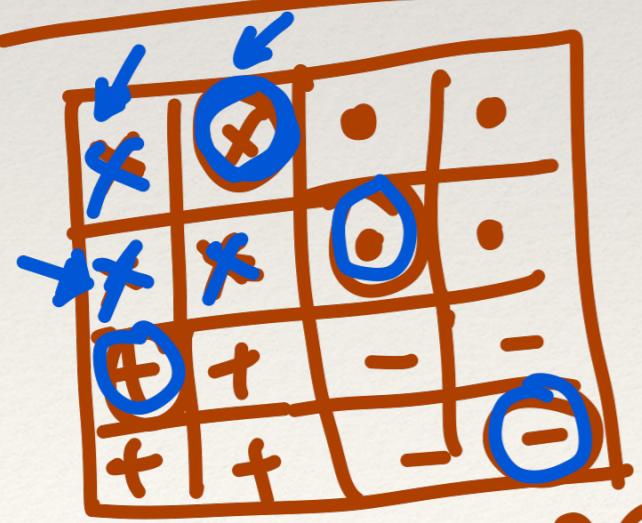
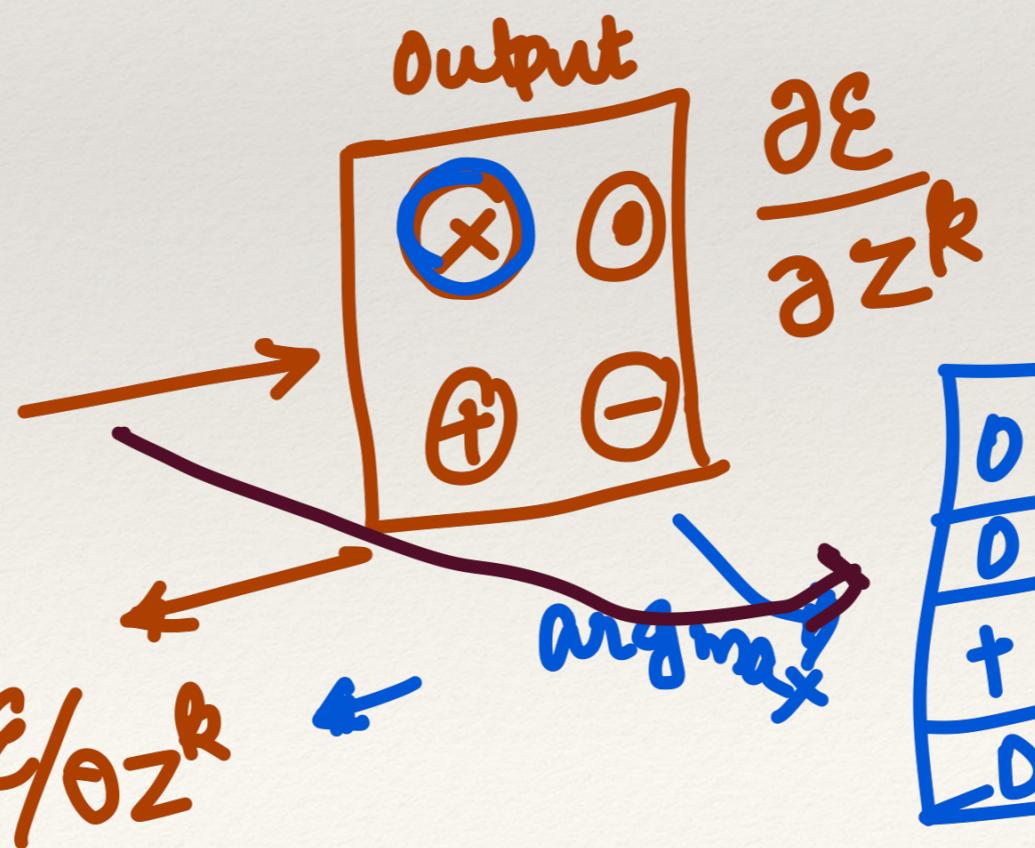
$$\frac{\partial \mathcal{E}}{\partial w^k[m,n]} =$$

$$\sum_{p,q=0,0}^{D_1-M, D_2-N} x[m+p, n+q] \cdot \frac{\partial \mathcal{E}}{\partial y^k[p, q]}$$

Conv.

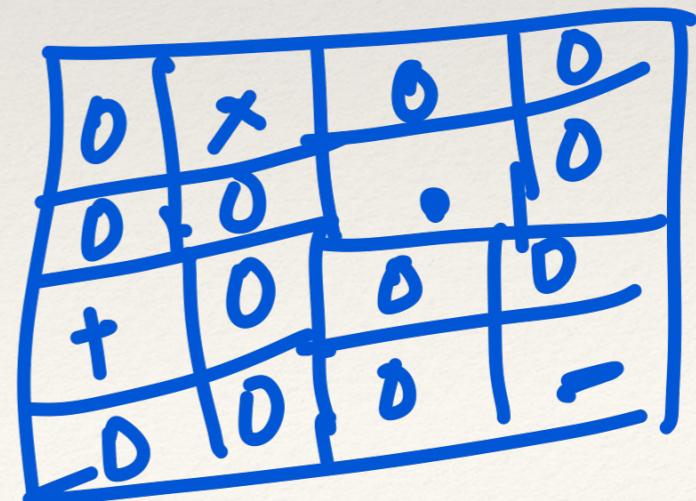


Max Pooling



argmax

Unpooling

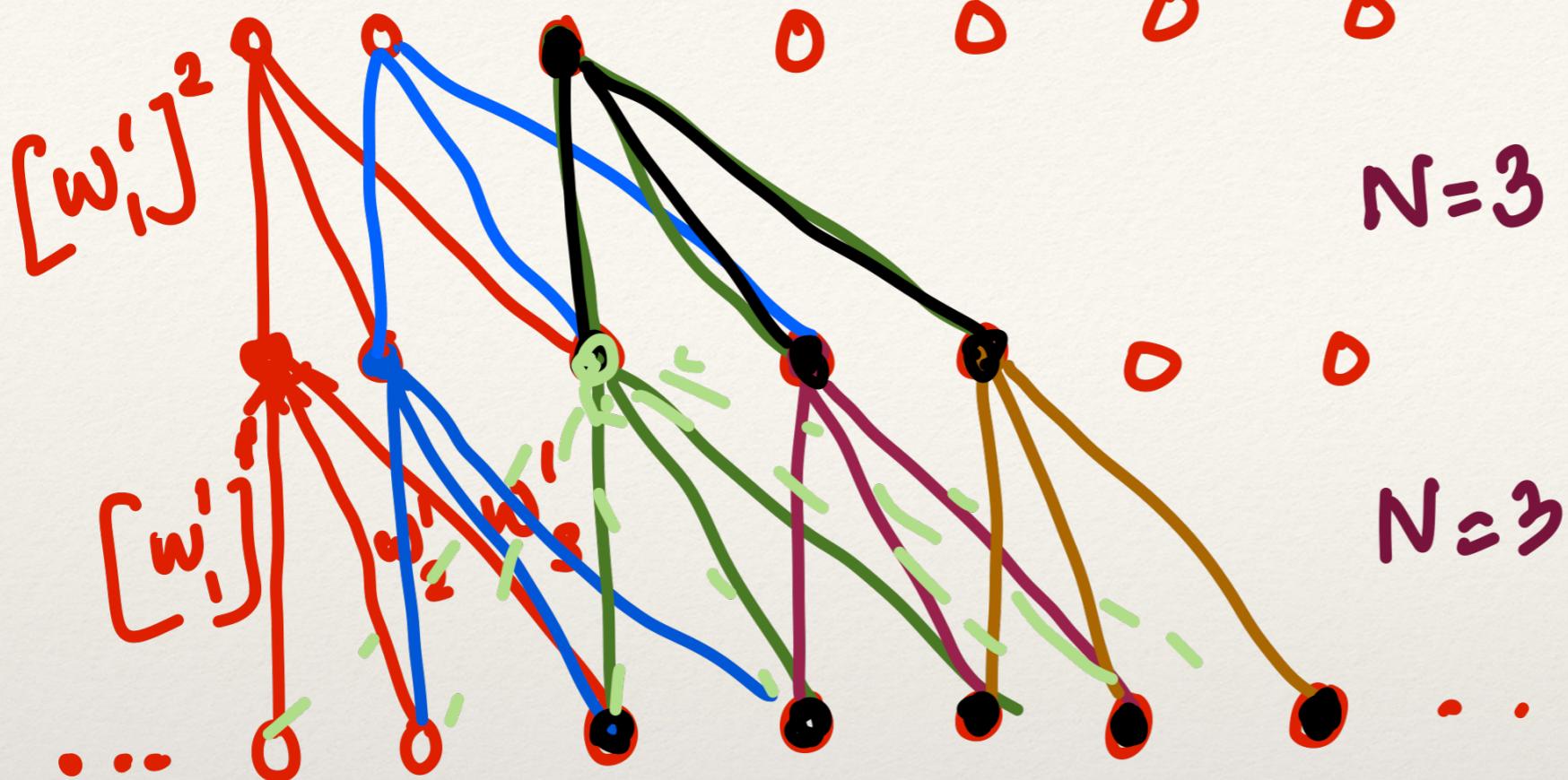


$$\frac{\partial}{\partial z^k} (h_L) = \frac{\bar{A}^T}{\bar{A}}$$

$y = m$

element wise

1-D Convolutional Network



Layers in more depth are looking more at more and global properties of the input

2nd layer

$o[i]$ = kernel output w_k^i weight
 k -such outputs K .

for
 i th lag
 and k th
 kernel

$$\underline{w^1} = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 4 & 1 \\ 2 & 5 & 3 \end{bmatrix} \dots$$

$$\underline{w^2} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \dots$$

Number of parameters

N = 3 or 5 or 7
 k = 64 or 128 or 256

CNN layers have
much smaller # of
parameters

→ weight sharing

Typical values

25600

$W^{H \times D}$

$D=100$

CNN

$64 \times 64 \times \dots \times D$

$W^{K \times N}$

~ 2000

DNN

$0 \ 0 \ \dots \ 0$

H

256

D

$K \times N$

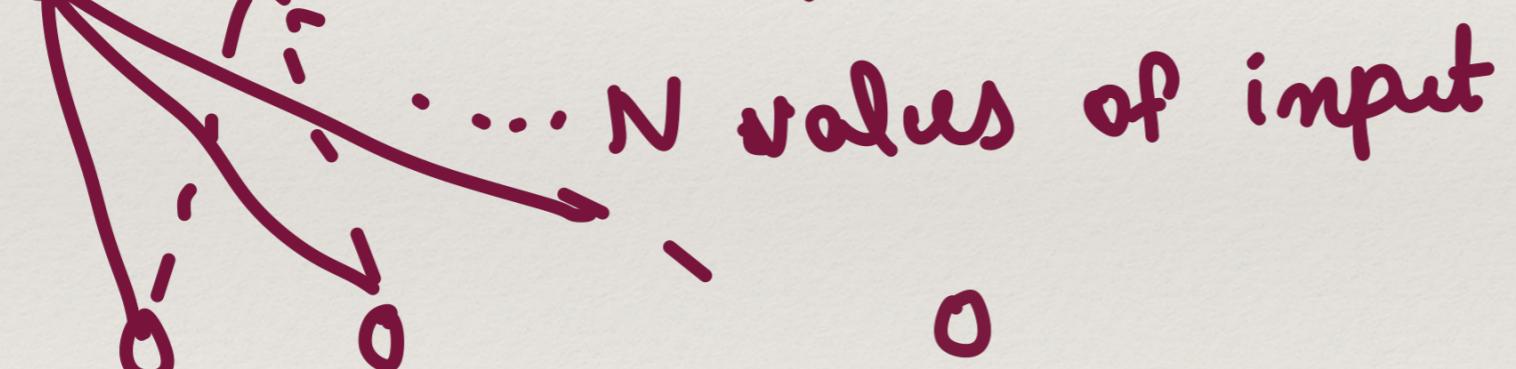
Expression for a 1-D CNN

$$y^k[n] = \sum_{i=1}^N x[n+i] \underbrace{w_i^k}_{4}$$

$$k = 1 \dots \underbrace{k}_{K}$$

$k \cdot k$

$$\begin{matrix} \dots & 0 & 0 & 0 & 0 & \dots & \dots & 0 & \dots \\ & 0 & 0 & 0 & 0 & \dots & \dots & 0 & \dots \\ & & 0 & 0 & 0 & \dots & \dots & 0 & \dots \\ & & & 0 & 0 & \dots & \dots & 0 & \dots \\ & & & & 0 & \dots & \dots & 0 & \dots \\ & & & & & 0 & \dots & 0 & \dots \\ & & & & & & 0 & \dots & 0 \\ & & & & & & & 0 & \dots \\ & & & & & & & & 0 \end{matrix} \quad \begin{matrix} k=0 \\ k=1 \\ k=2 \end{matrix}$$



N - kernel width

K - # kernels

parameters
is $\underbrace{k \times N}_{w^2}$

$$w^0 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$