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Deep Networks Intuition

Neural networks with multiple hidden layers - Deep
networks [Hinton, 2006]
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Deep Networks Intuition

Neural networks with multiple hidden layers - Deep
networks




Need for Depth
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Deep Networks

50X BOOST IN DEEP LEARNING
YEARS
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- Are these networks trainable ?
- Advances in computation and processing
- Graphical processing units (GPUs) performing multiple

parallel multiply accumulate operations.

ﬁ - Large amounts of supervised data sets



Deep Networks
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- Will the networksSgeneralize)with deep networks

- DNNs are quite data hungry and performance

improves by increasing the data.

» Generalization problem is tackled by providing

tréining data from all possible conditions.

S —————

- Many artificial data augmentation methods have

been successfully deployed

- Providing the state-of-art performance in several

real world applications.
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Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system. u Y - t“t
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Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system.
- Extract factors that enable classification while
suppressing factors which are susceptible to noise.

- Finding the right representation for real world applications -
substantially challenging.

g£Deep learning solution - build comple lons

from simpler representations.

%€ The dependencies between these hierarchical
\

representations are refined by the target.
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Underfit
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Avoiding OverFitting In Practice






1. Weight Decay Regularization
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Early Stopping
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Most Popular in Practice
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T . Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift 2615

Sergey loffe Christian Szegedy
Google Inc., sioffe@google.com Google Inc., szegedy @google.com
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Ettect of Batch Normalization
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Figure 1: (a) The test accuracy of the MNIST network o o
trained with and without Batch Normalization, vs. the N
number of training steps. Batch Normalization helps the {zl}
network train faster and achieve higher accuracy. (b, =|
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50,85 }ih
percentiles. Batch Normalization makes the distribution

more stable and reduces the internal covariate shift.
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 Dropout Strategy in Neural Network Training

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting

Nitish Srivastava NITISHQCS. TORONTO.EDU
HINTON@CS. TORONTO.EDU
Alex Krizhevsky KRIZQCS. TORONTO.EDU
Ilya Sutskever ILYAQCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU
Department of Computer Science O l 3

University of Toronto 9_

10 Kings College Road, Rm 3302 /

Toronto, Ontario, M5S 3G4, Canada.



Dropouts in Neural Networks
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Dropout in Training and Test

@

Present with Always
probability p present
(a) At training time (b) At test time
Ga——

Consistent Ofp
n WR‘V\Q



Dropout Application

(a) Standard network

(b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.



Effect of Dropouts

Classification Error %
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Figure 4: Test error for different architectures

with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.



Convolutional Neural Networks
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Other Architectures - Convolution Operation

Weight sharing
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Max Pooling Operation
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Convolutional Neural Networks
Qe

Input layer (S1) 4 feacure maps

......... N

sub-sampling fayer | lly connected MLPI

convolution layer -Rﬂl\ﬂsub-sampling layer

s
» Multiple levels of filtering and subsampling operations.

» Feature maps are generated at every layer.



Convolutional Neural Networks

Inpuc layer (S1) 4 feature maps

1 (C1) 4 feature maps (52) 6 feature maps (C2] 6 feature maps

convelution layer l sub-sampling layer l convolution layer l sub-sampling layer liullyconnecced MLPI

» Multiple levels of filtering and subsampling operations.

» Feature maps are generated at every layer.



Back Pr(_)mg_ation in CNNs
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