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the low-dimensional map qi j are given by

qi j =
exp

(
−‖yi− y j‖2

)

∑k !=l exp(−‖yk− yl‖2)
, (3)

The obvious way to define the pairwise similarities in the high-dimensional space pi j is

pi j =
exp

(
−‖xi− x j‖2/2σ2

)

∑k !=l exp(−‖xk− xl‖2/2σ2)
,

but this causes problems when a high-dimensional datapoint xi is an outlier (i.e., all pairwise dis-
tances ‖xi− x j‖2 are large for xi). For such an outlier, the values of pi j are extremely small for
all j, so the location of its low-dimensional map point yi has very little effect on the cost function.
As a result, the position of the map point is not well determined by the positions of the other map
points. We circumvent this problem by defining the joint probabilities pi j in the high-dimensional
space to be the symmetrized conditional probabilities, that is, we set pi j =

p j|i+pi| j
2n . This ensures that

∑ j pi j > 1
2n for all datapoints xi, as a result of which each datapoint xi makes a significant contri-

bution to the cost function. In the low-dimensional space, symmetric SNE simply uses Equation 3.
The main advantage of the symmetric version of SNE is the simpler form of its gradient, which is
faster to compute. The gradient of symmetric SNE is fairly similar to that of asymmetric SNE, and
is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j).

In preliminary experiments, we observed that symmetric SNE seems to produce maps that are just
as good as asymmetric SNE, and sometimes even a little better.

3.2 The Crowding Problem

Consider a set of datapoints that lie on a two-dimensional curved manifold which is approximately
linear on a small scale, and which is embedded within a higher-dimensional space. It is possible to
model the small pairwise distances between datapoints fairly well in a two-dimensional map, which
is often illustrated on toy examples such as the “Swiss roll” data set. Now suppose that the mani-
fold has ten intrinsic dimensions5 and is embedded within a space of much higher dimensionality.
There are several reasons why the pairwise distances in a two-dimensional map cannot faithfully
model distances between points on the ten-dimensional manifold. For instance, in ten dimensions,
it is possible to have 11 datapoints that are mutually equidistant and there is no way to model this
faithfully in a two-dimensional map. A related problem is the very different distribution of pairwise
distances in the two spaces. The volume of a sphere centered on datapoint i scales as rm, where r is
the radius and m the dimensionality of the sphere. So if the datapoints are approximately uniformly
distributed in the region around i on the ten-dimensional manifold, and we try to model the dis-
tances from i to the other datapoints in the two-dimensional map, we get the following “crowding
problem”: the area of the two-dimensional map that is available to accommodate moderately distant
datapoints will not be nearly large enough compared with the area available to accommodate nearby
datapoints. Hence, if we want to model the small distances accurately in the map, most of the points

5. This is approximately correct for the images of handwritten digits we use in our experiments in Section 4.
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where Y (t) indicates the solution at iteration t, η indicates the learning rate, and α(t) represents the
momentum at iteration t.

In addition, in the early stages of the optimization, Gaussian noise is added to the map points
after each iteration. Gradually reducing the variance of this noise performs a type of simulated
annealing that helps the optimization to escape from poor local minima in the cost function. If the
variance of the noise changes very slowly at the critical point at which the global structure of the
map starts to form, SNE tends to find maps with a better global organization. Unfortunately, this
requires sensible choices of the initial amount of Gaussian noise and the rate at which it decays.
Moreover, these choices interact with the amount of momentum and the step size that are employed
in the gradient descent. It is therefore common to run the optimization several times on a data set
to find appropriate values for the parameters.4 In this respect, SNE is inferior to methods that allow
convex optimization and it would be useful to find an optimization method that gives good results
without requiring the extra computation time and parameter choices introduced by the simulated
annealing.

3. t-Distributed Stochastic Neighbor Embedding

Section 2 discussed SNE as it was presented by Hinton and Roweis (2002). Although SNE con-
structs reasonably good visualizations, it is hampered by a cost function that is difficult to optimize
and by a problem we refer to as the “crowding problem”. In this section, we present a new technique
called “t-Distributed Stochastic Neighbor Embedding” or “t-SNE” that aims to alleviate these prob-
lems. The cost function used by t-SNE differs from the one used by SNE in two ways: (1) it uses a
symmetrized version of the SNE cost function with simpler gradients that was briefly introduced by
Cook et al. (2007) and (2) it uses a Student-t distribution rather than a Gaussian to compute the sim-
ilarity between two points in the low-dimensional space. t-SNE employs a heavy-tailed distribution
in the low-dimensional space to alleviate both the crowding problem and the optimization problems
of SNE.

In this section, we first discuss the symmetric version of SNE (Section 3.1). Subsequently, we
discuss the crowding problem (Section 3.2), and the use of heavy-tailed distributions to address this
problem (Section 3.3). We conclude the section by describing our approach to the optimization of
the t-SNE cost function (Section 3.4).

3.1 Symmetric SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the condi-
tional probabilities p j|i and q j|i, it is also possible to minimize a single Kullback-Leibler divergence
between a joint probability distribution, P, in the high-dimensional space and a joint probability
distribution, Q, in the low-dimensional space:

C = KL(P||Q) =∑
i
∑
j
pi j log

pi j
qi j

.

where again, we set pii and qii to zero. We refer to this type of SNE as symmetric SNE, because it
has the property that pi j = p ji and qi j = q ji for ∀i, j. In symmetric SNE, the pairwise similarities in

4. Picking the best map after several runs as a visualization of the data is not nearly as problematic as picking the model
that does best on a test set during supervised learning. In visualization, the aim is to see the structure in the training
data, not to generalize to held out test data.
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that are at a moderate distance from datapoint i will have to be placed much too far away in the
two-dimensional map. In SNE, the spring connecting datapoint i to each of these too-distant map
points will thus exert a very small attractive force. Although these attractive forces are very small,
the very large number of such forces crushes together the points in the center of the map, which
prevents gaps from forming between the natural clusters. Note that the crowding problem is not
specific to SNE, but that it also occurs in other local techniques for multidimensional scaling such
as Sammon mapping.

An attempt to address the crowding problem by adding a slight repulsion to all springs was pre-
sented by Cook et al. (2007). The slight repulsion is created by introducing a uniform background
model with a small mixing proportion, ρ. So however far apart two map points are, qi j can never fall
below 2ρ

n(n−1) (because the uniform background distribution is over n(n−1)/2 pairs). As a result, for
datapoints that are far apart in the high-dimensional space, qi j will always be larger than pi j, leading
to a slight repulsion. This technique is called UNI-SNE and although it usually outperforms stan-
dard SNE, the optimization of the UNI-SNE cost function is tedious. The best optimization method
known is to start by setting the background mixing proportion to zero (i.e., by performing standard
SNE). Once the SNE cost function has been optimized using simulated annealing, the background
mixing proportion can be increased to allow some gaps to form between natural clusters as shown
by Cook et al. (2007). Optimizing the UNI-SNE cost function directly does not work because two
map points that are far apart will get almost all of their qi j from the uniform background. So even
if their pi j is large, there will be no attractive force between them, because a small change in their
separation will have a vanishingly small proportional effect on qi j. This means that if two parts of
a cluster get separated early on in the optimization, there is no force to pull them back together.

3.3 Mismatched Tails can Compensate for Mismatched Dimensionalities

Since symmetric SNE is actually matching the joint probabilities of pairs of datapoints in the high-
dimensional and the low-dimensional spaces rather than their distances, we have a natural way
of alleviating the crowding problem that works as follows. In the high-dimensional space, we
convert distances into probabilities using a Gaussian distribution. In the low-dimensional map, we
can use a probability distribution that has much heavier tails than a Gaussian to convert distances
into probabilities. This allows a moderate distance in the high-dimensional space to be faithfully
modeled by a much larger distance in the map and, as a result, it eliminates the unwanted attractive
forces between map points that represent moderately dissimilar datapoints.

In t-SNE, we employ a Student t-distribution with one degree of freedom (which is the same
as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. Using this
distribution, the joint probabilities qi j are defined as

qi j =
(
1+‖yi− y j‖2

)−1

∑k "=l (1+‖yk− yl‖2)−1
. (4)

We use a Student t-distribution with a single degree of freedom, because it has the particularly
nice property that

(
1+‖yi− y j‖2

)−1 approaches an inverse square law for large pairwise distances
‖yi− y j‖ in the low-dimensional map. This makes the map’s representation of joint probabilities
(almost) invariant to changes in the scale of the map for map points that are far apart. It also means
that large clusters of points that are far apart interact in just the same way as individual points, so the
optimization operates in the same way at all but the finest scales. A theoretical justification for our
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Representation Learning in Deep Networks
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[Zeiler, 2014]
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• Map the features to phone class. Using phone labelled data.

Speech Recognition
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• Classical machine learning - train a classifier on speech training data 
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Understanding DNNs for Speech
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