
Visualization Tool Using t-SNE

Visualizing Data using t-SNE

Laurens van der Maaten

TiCC

Tilburg University

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

LVDMAATEN@GMAIL.COM

Geoffrey Hinton

Department of Computer Science

University of Toronto

6 King's College Road, M5S 3G4 Toronto, ON, Canada

HINTON@CS.TORONTO.EDU

Dimensionality reduction $\{x_n\}_{n=1}^N \in \mathbb{R}^D$

$d \ll D$.

$d = 2$ for visualization.

Neighborhood Embedding

(x_i, x_j) are close in D dimensional space

$\rightarrow \{y_i, y_j\}$ to be close in d dimensional space

$y_n = \Phi^T (x_n - \mu)$

Dimensionality reduction

↳ preserving neighbourhood

probability model

and distance between probability
distr

Visualization tool using t-SNE

$$p_{ii} = 0$$

$$\text{Gaussian } \mathbb{D}^n$$

$$\text{student } t\text{-distribution}$$

$$p_{ii} = 0$$

$$p_{ij} = \frac{\exp(-\|x_i - x_j\|^2/2\sigma^2)}{\sum_{k \neq l} \exp(-\|x_k - x_l\|^2/2\sigma^2)} \rightarrow \mathbb{R}^D$$

width parameter

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}} \rightarrow \mathbb{R}^D$$

$$C = KL(P || Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

KL divergence

$$\rightarrow - \sum_{i,j} p_{ij} \frac{\log q_{ij}}{p_{ij}}$$

Goal in t-SNE

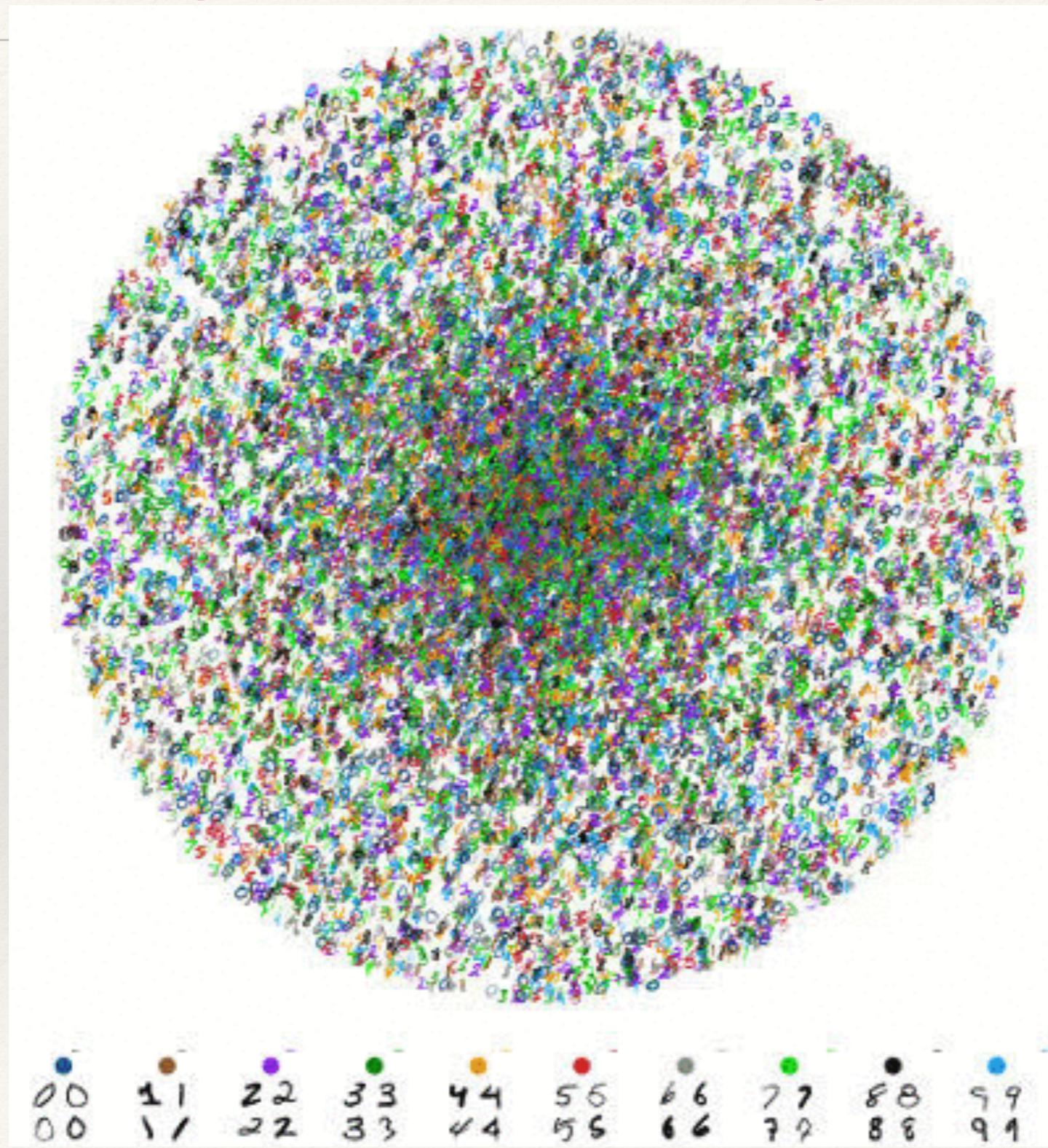
$$\arg \min_{\{y_1, \dots, y_N\}} C. = \underline{y_1^*, y_2^*, \dots, y_N^*}$$

Gradient descent

$$y_i \in \underline{\mathbb{R}^d}$$

Iterative update of lower dimensional representation.

Visualizing back propagation in tSNE



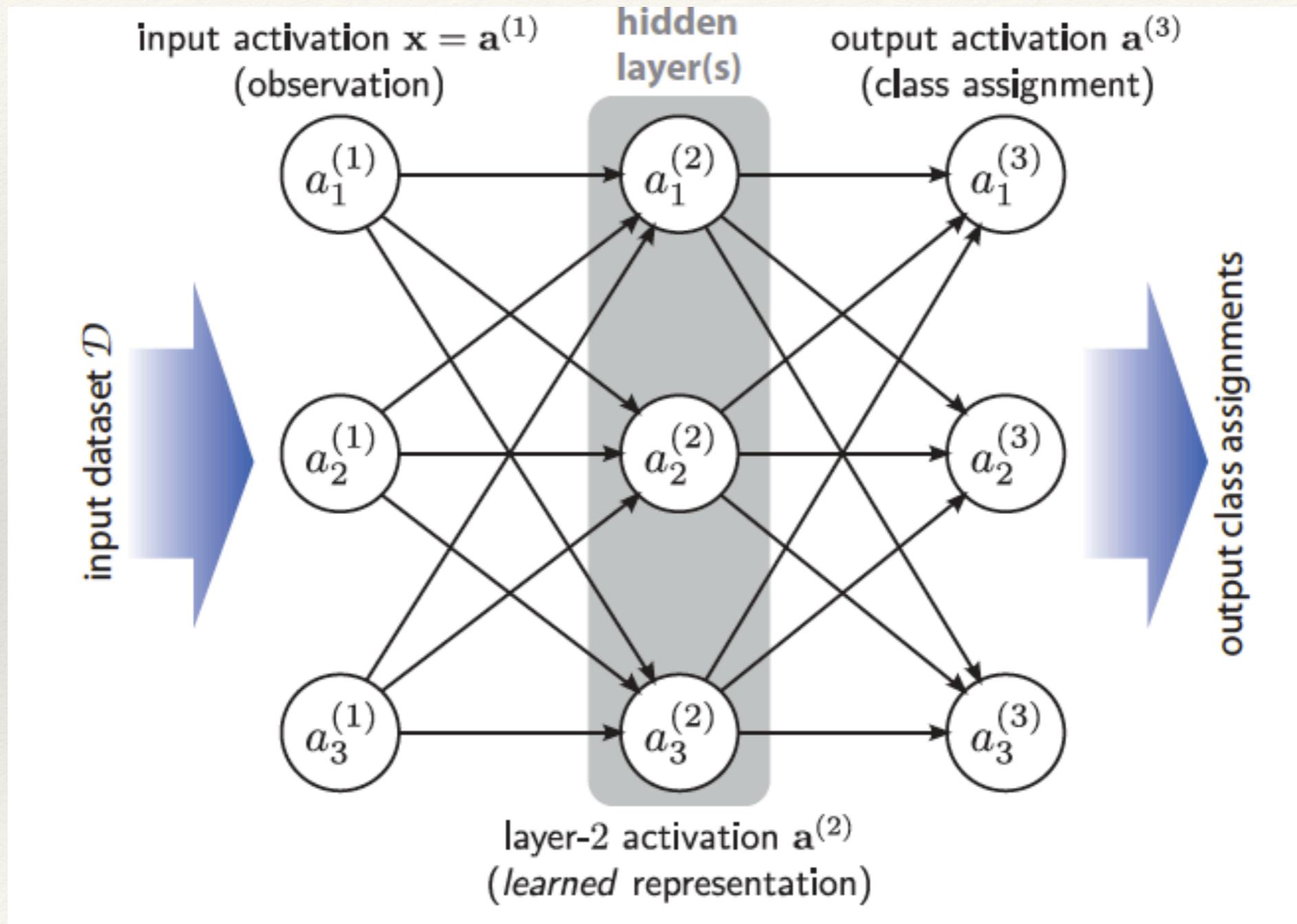
Understanding Deep Networks

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS VOL. 23, NO. 1, JANUARY 2017

Visualizing the Hidden Activity of Artificial Neural Networks

Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcão, and Alexandru C. Telea

Understanding Deep Networks



Understanding Deep Networks

SVHN dataset

Understanding Deep Networks

CIFAR-10

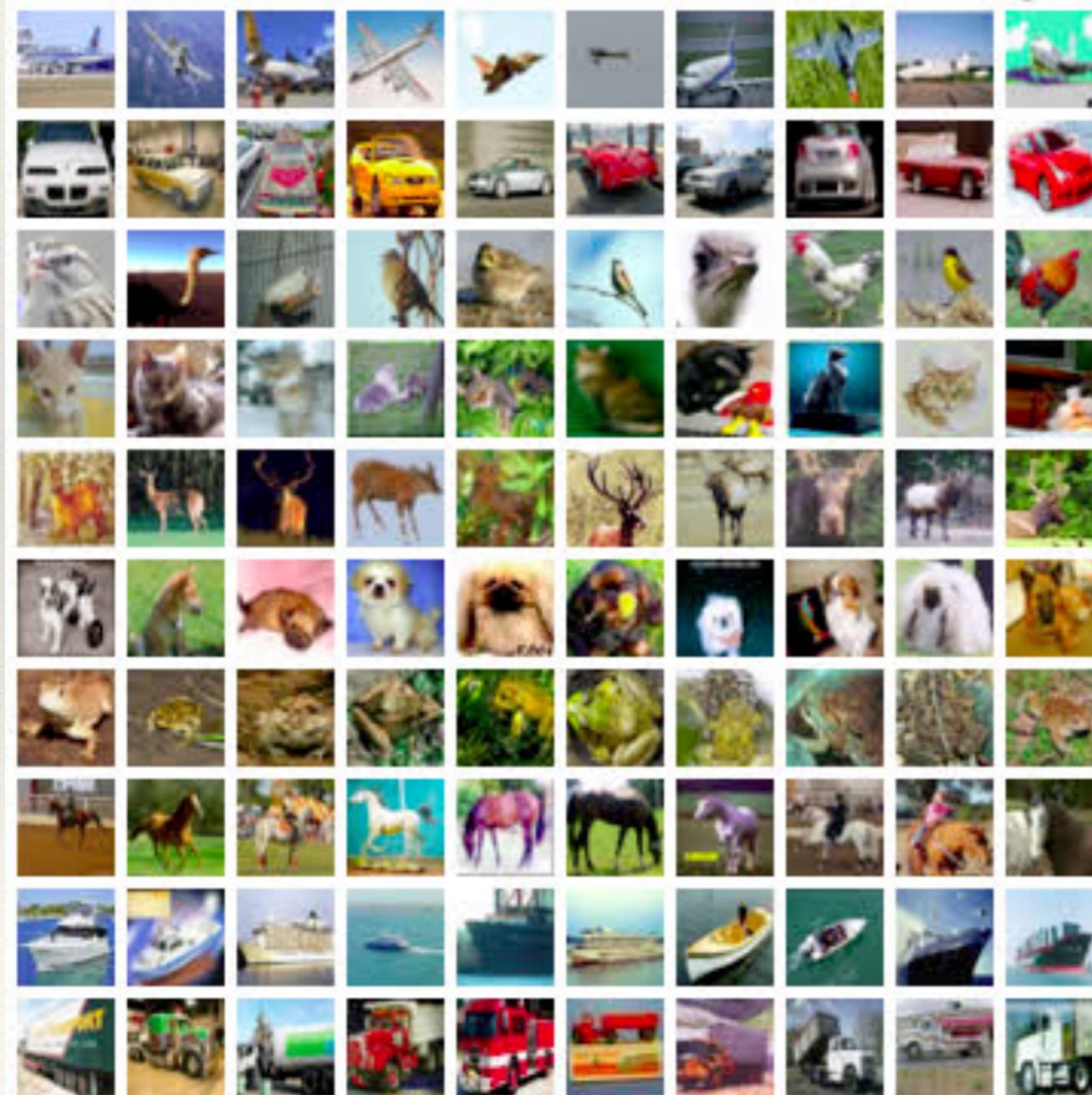
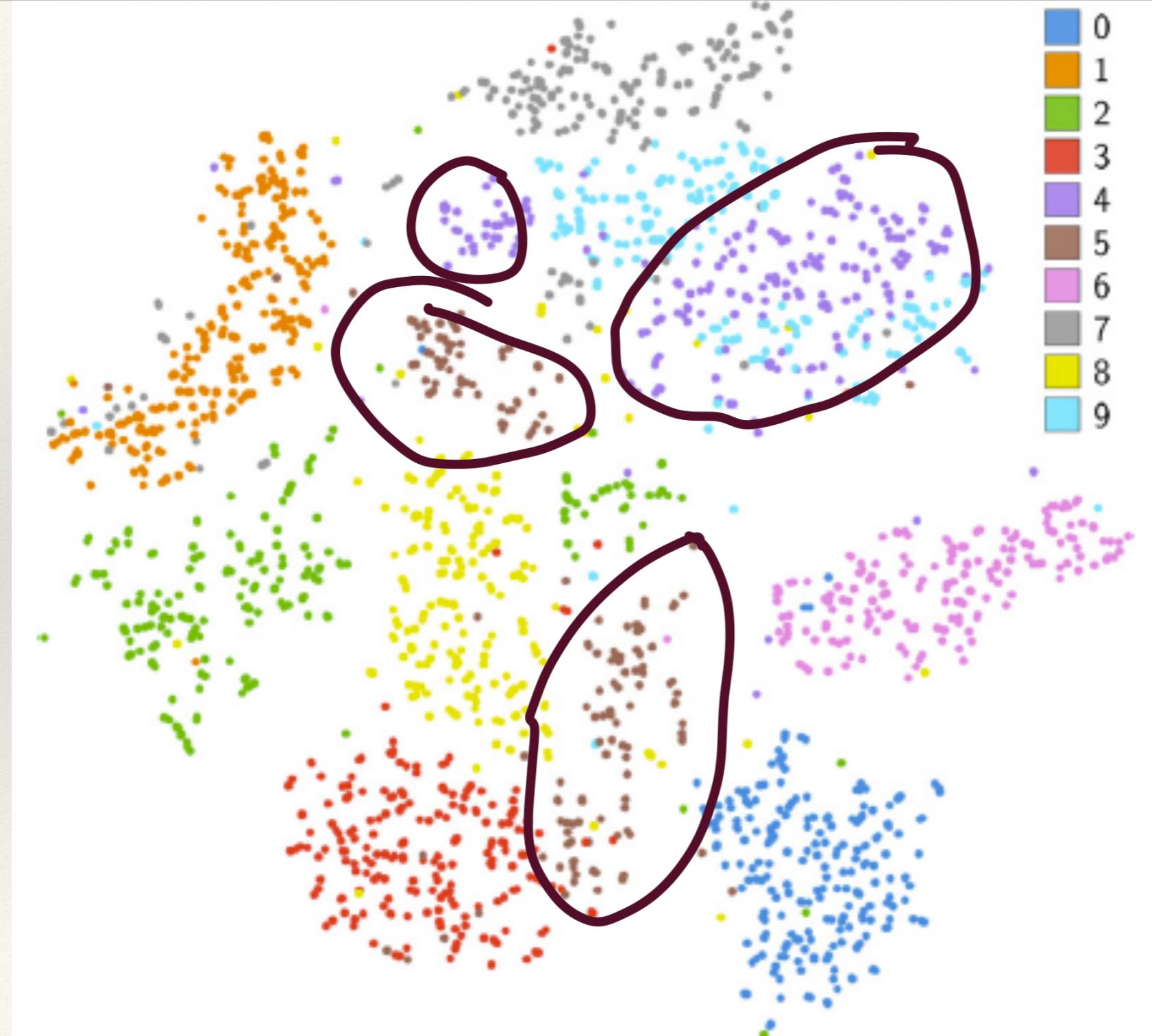


Table 1. Test Set Accuracies for our Two Architectures

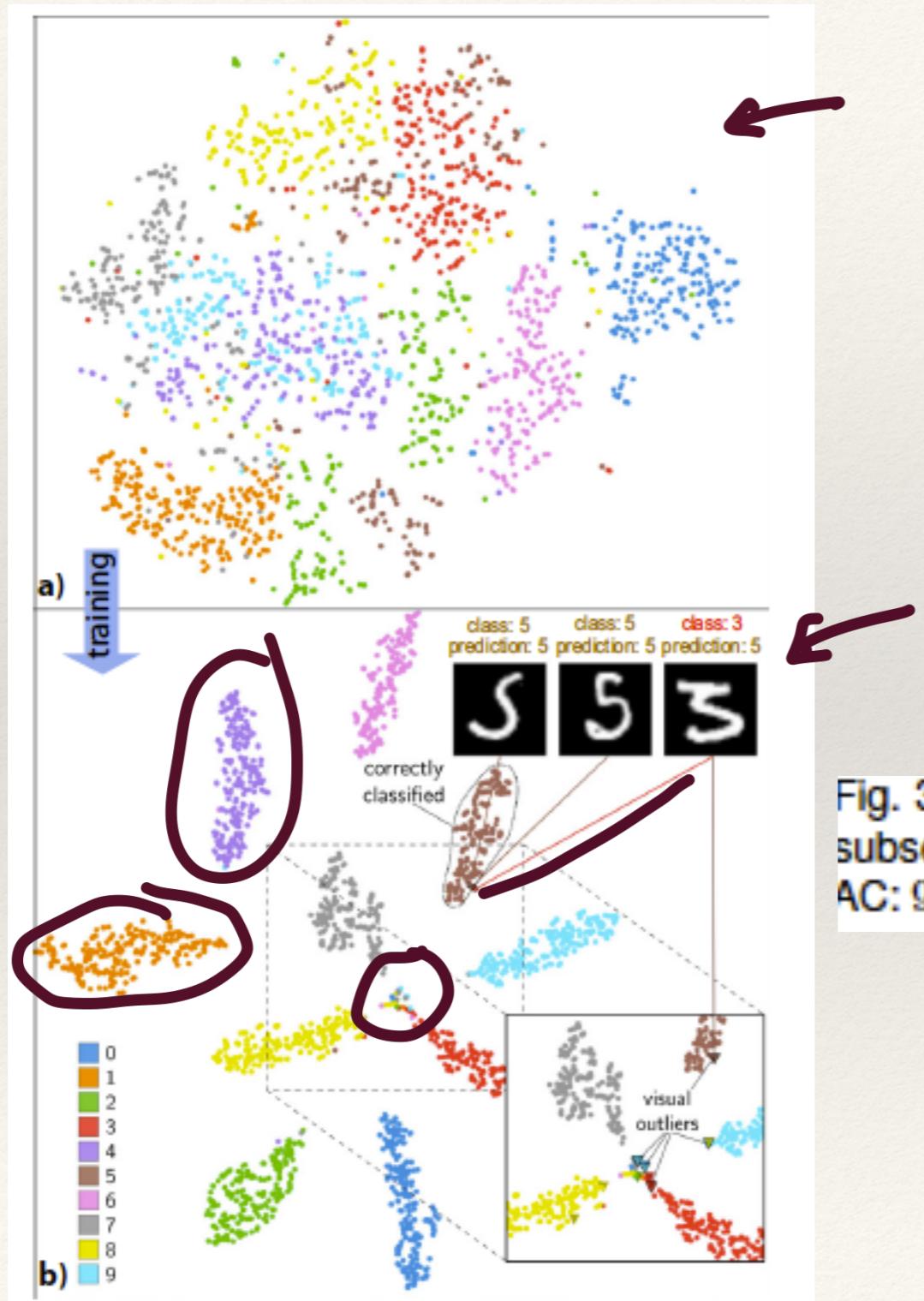
Model Dataset	MLP	CNN	State-of-the-art
MNIST	98.52%	99.62%	99.79% [47]
SVHN	77.38%	93.76%	98.08% [23]
CIFAR-10	52.91%	79.19%	91.78% [23]

Understanding Deep Networks



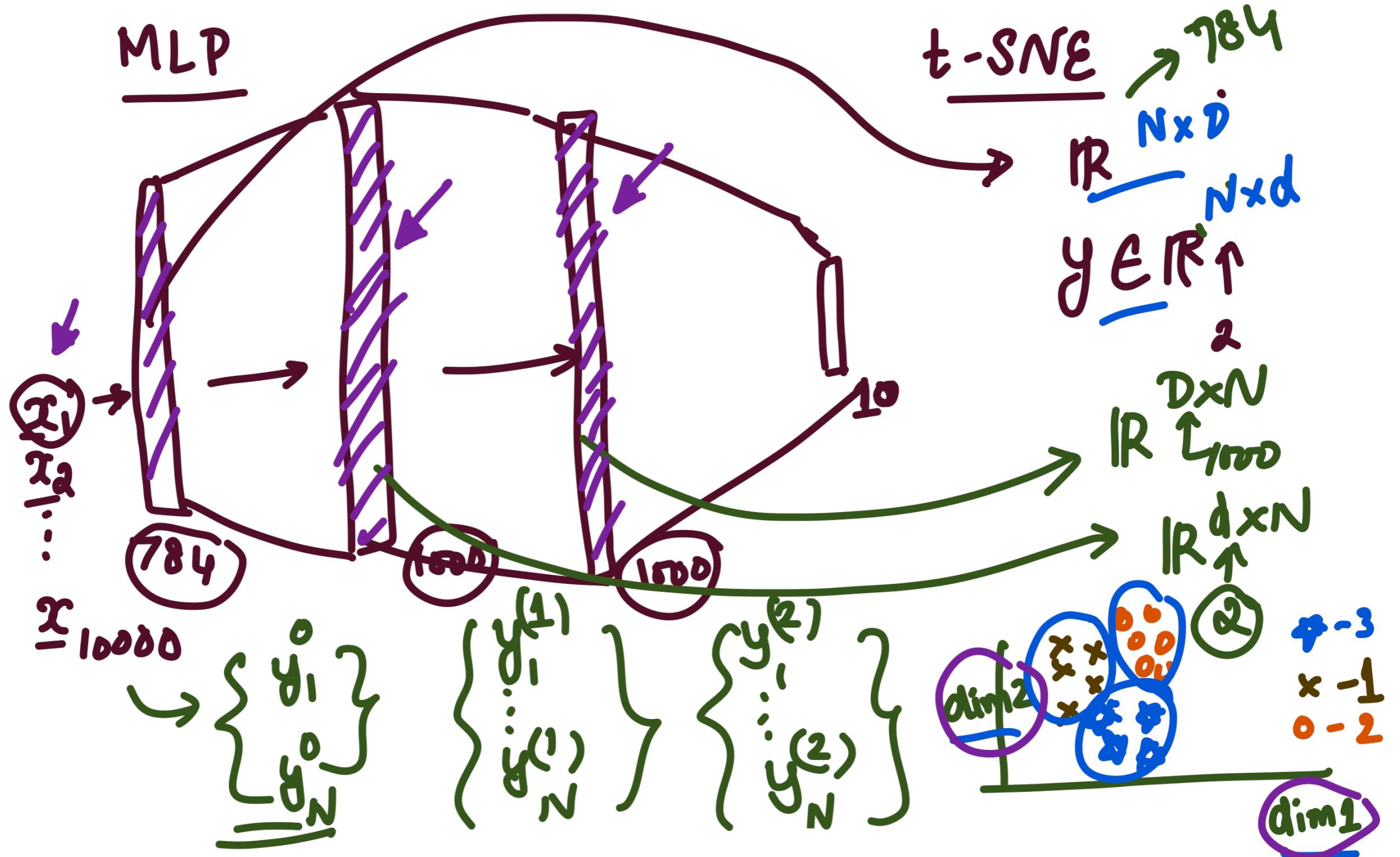
4 4
tSNE
projection
of MNIST
Images

Understanding Deep Networks



tSNE
projection
of last layer
of the neural network.

Fig. 3. Projection of the last MLP hidden layer activations MNIST test subset. a) Before training (NH: 83.78%). b) After training (NH: 98.36%, AC: 99.15%). Inset shows classification of visual outliers.



Understanding Deep Networks

Fig. 4. Projection of the last MLP hidden layer activations before training, SVHN test subset (NH: 20.94%). Poor class separation is visible.

SVHN

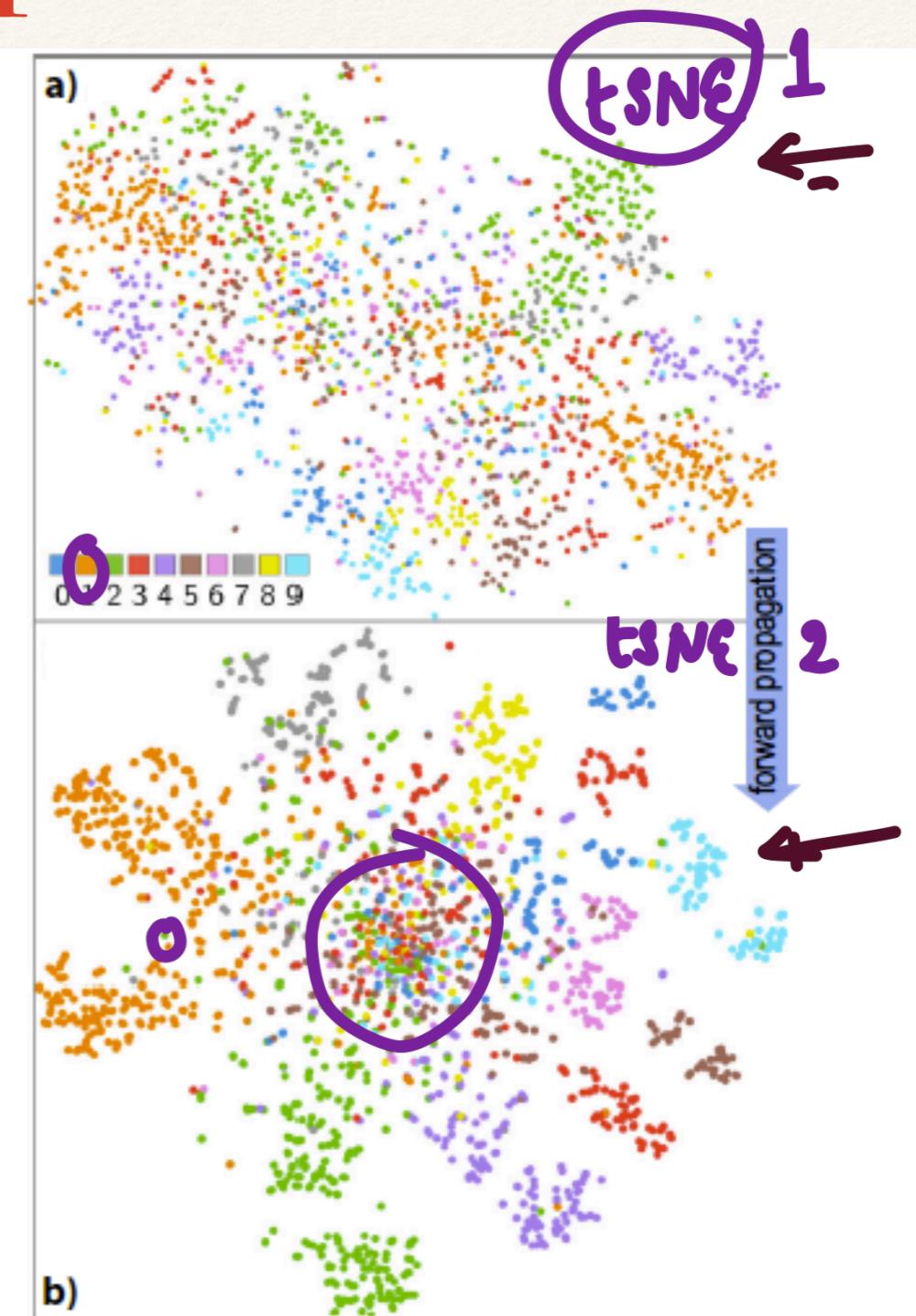


Fig. 5. Projection of the MLP hidden layer activations after training, SVHN test subset. a) First hidden layer (NH: 52.78%). b) Last hidden layer (NH: 67%).

CIFAR-10

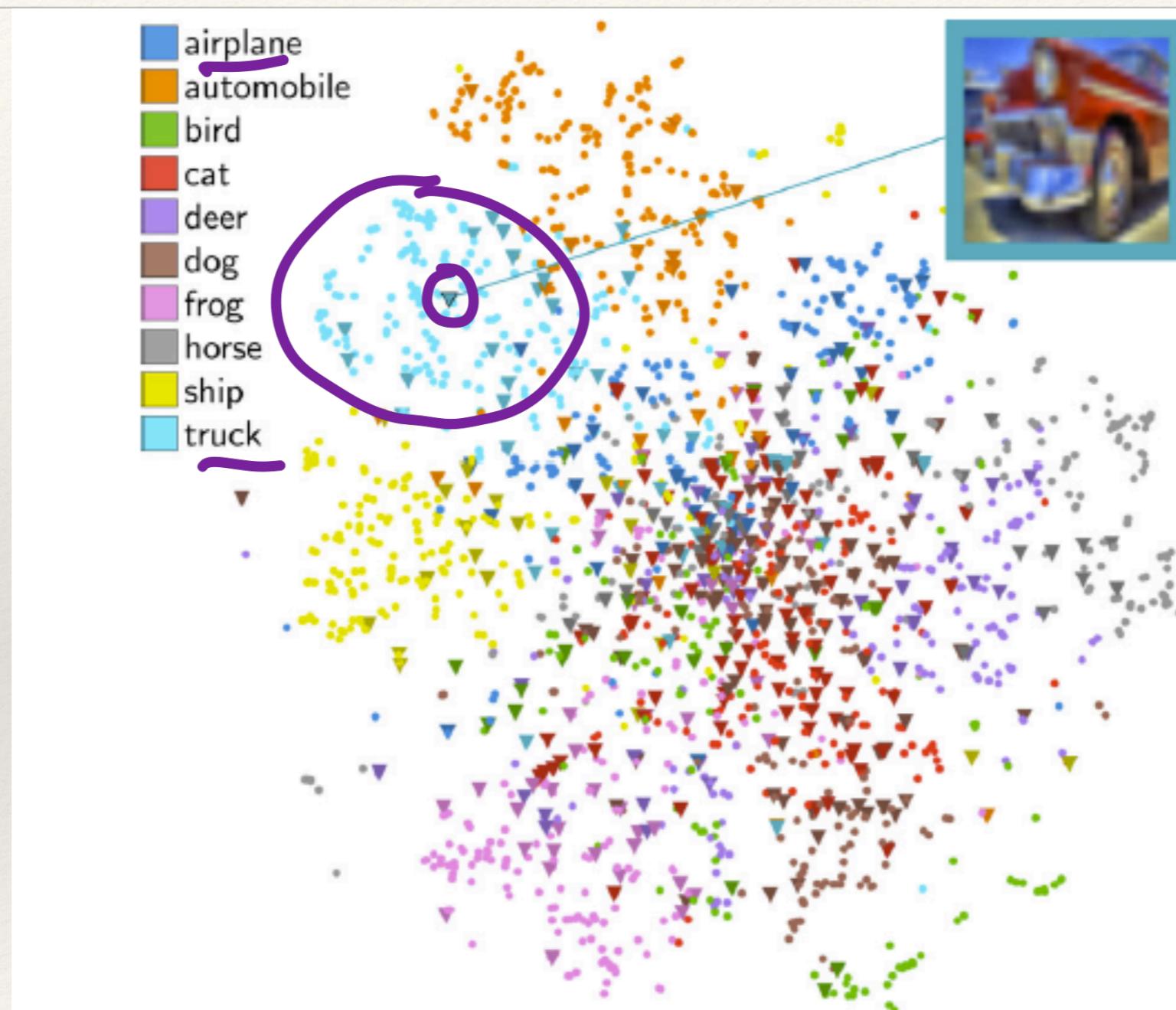


Fig. 9. Projection of last CNN hidden layer activations after training, CIFAR-10 test subset (NH: 53.43%, AC: 78.7%).

flatten
CNN layer
↳ tSNE

Understanding Deep Networks

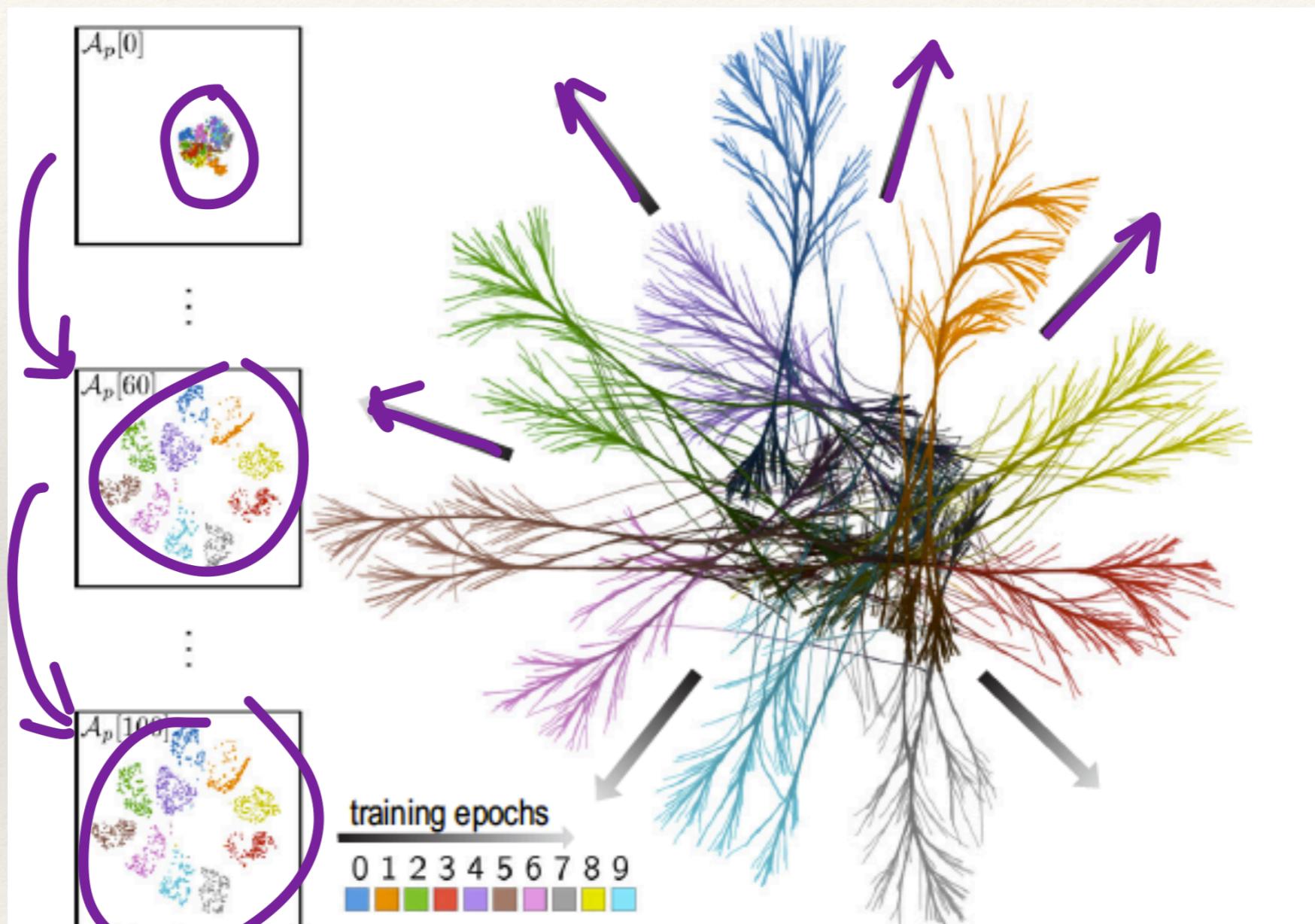


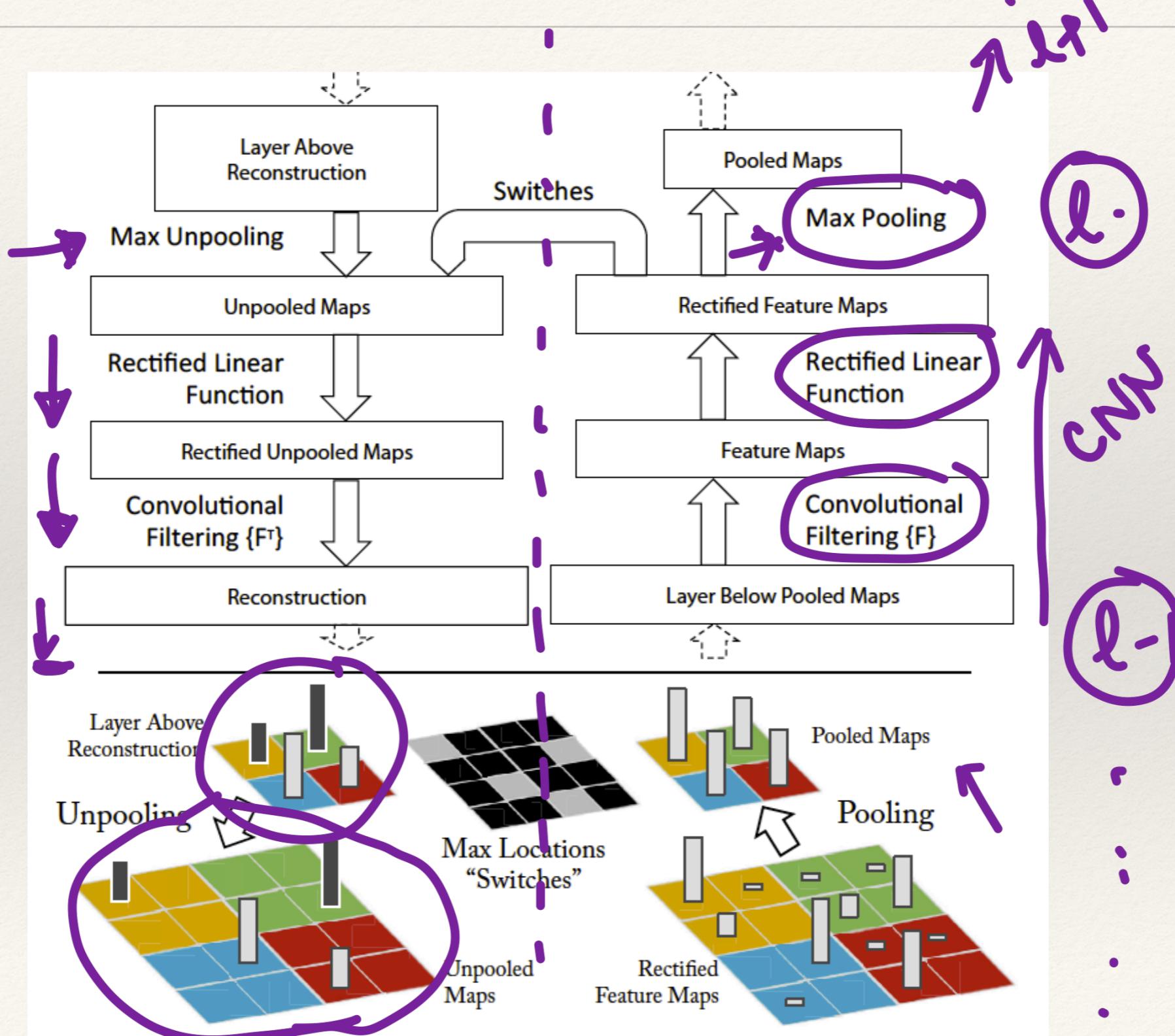
Fig. 11. Inter-epoch evolution, last CNN hidden layer, epochs 0-100, in steps of 20, *MNIST* test subset. Brighter trail parts show later epochs.

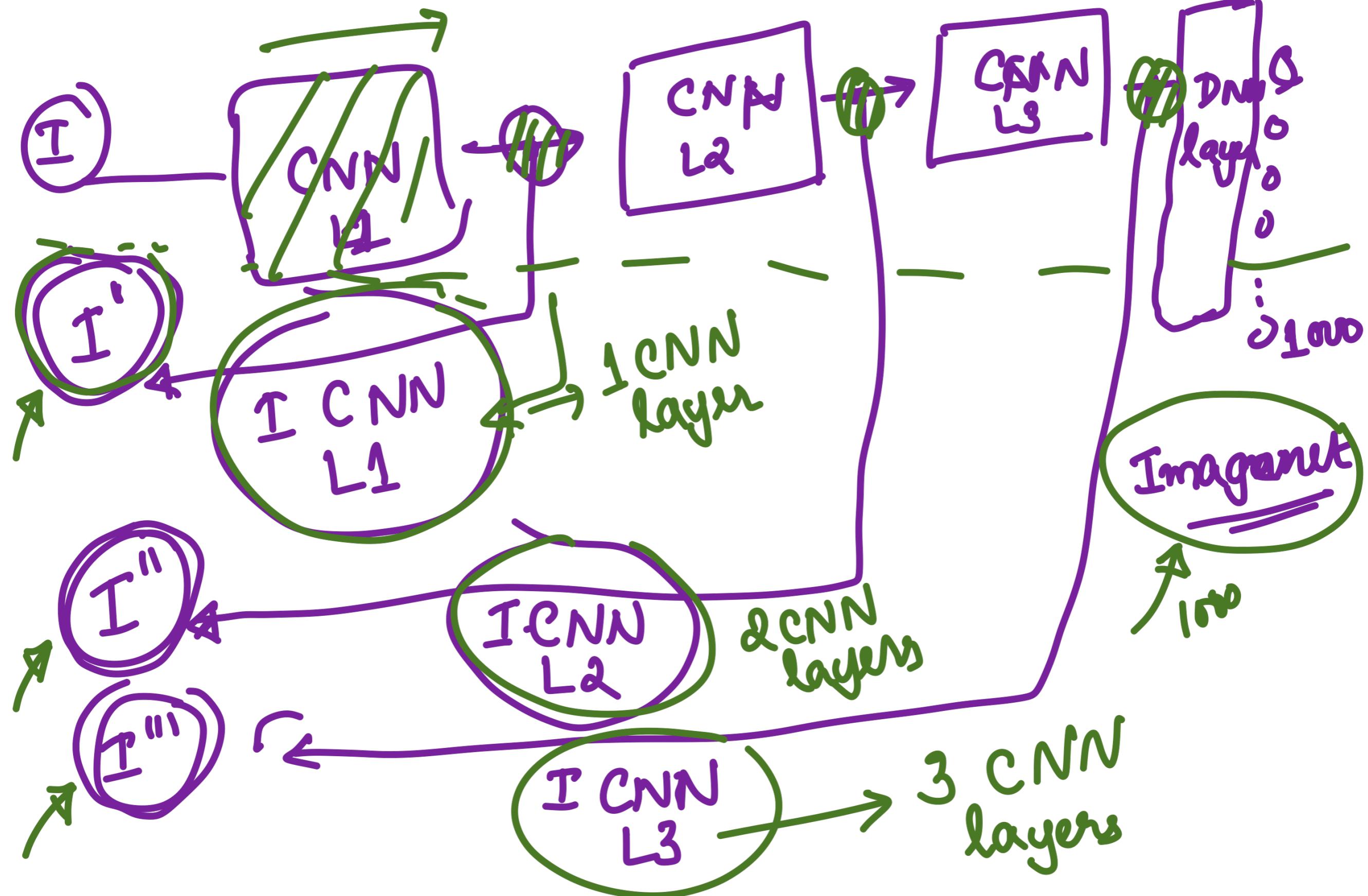
Visualizing and Understanding Convolutional Networks

Matthew D. Zeiler and Rob Fergus

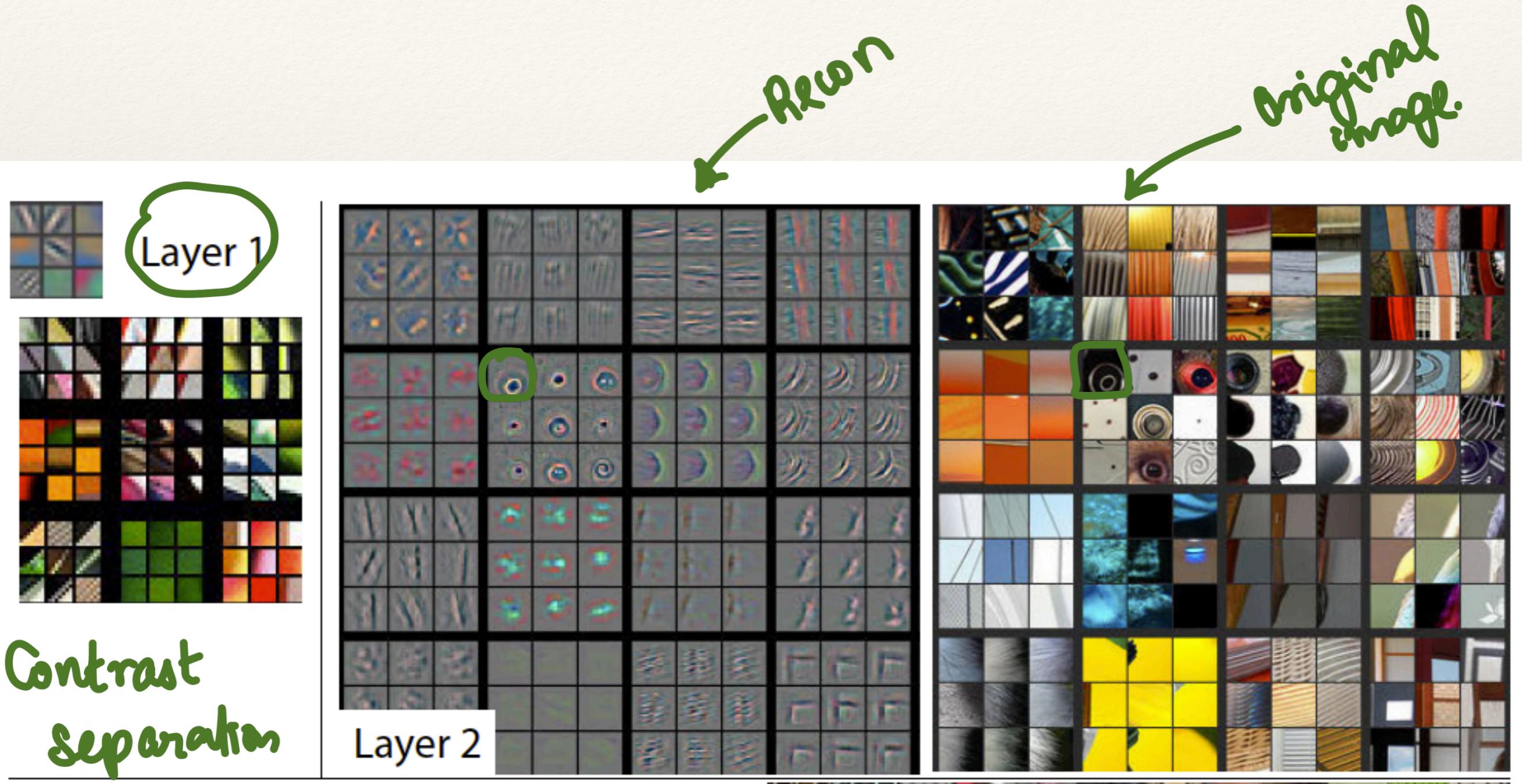
Dept. of Computer Science,
New York University, USA
`{zeiler,fergus}@cs.nyu.edu`

Understanding Deep Networks

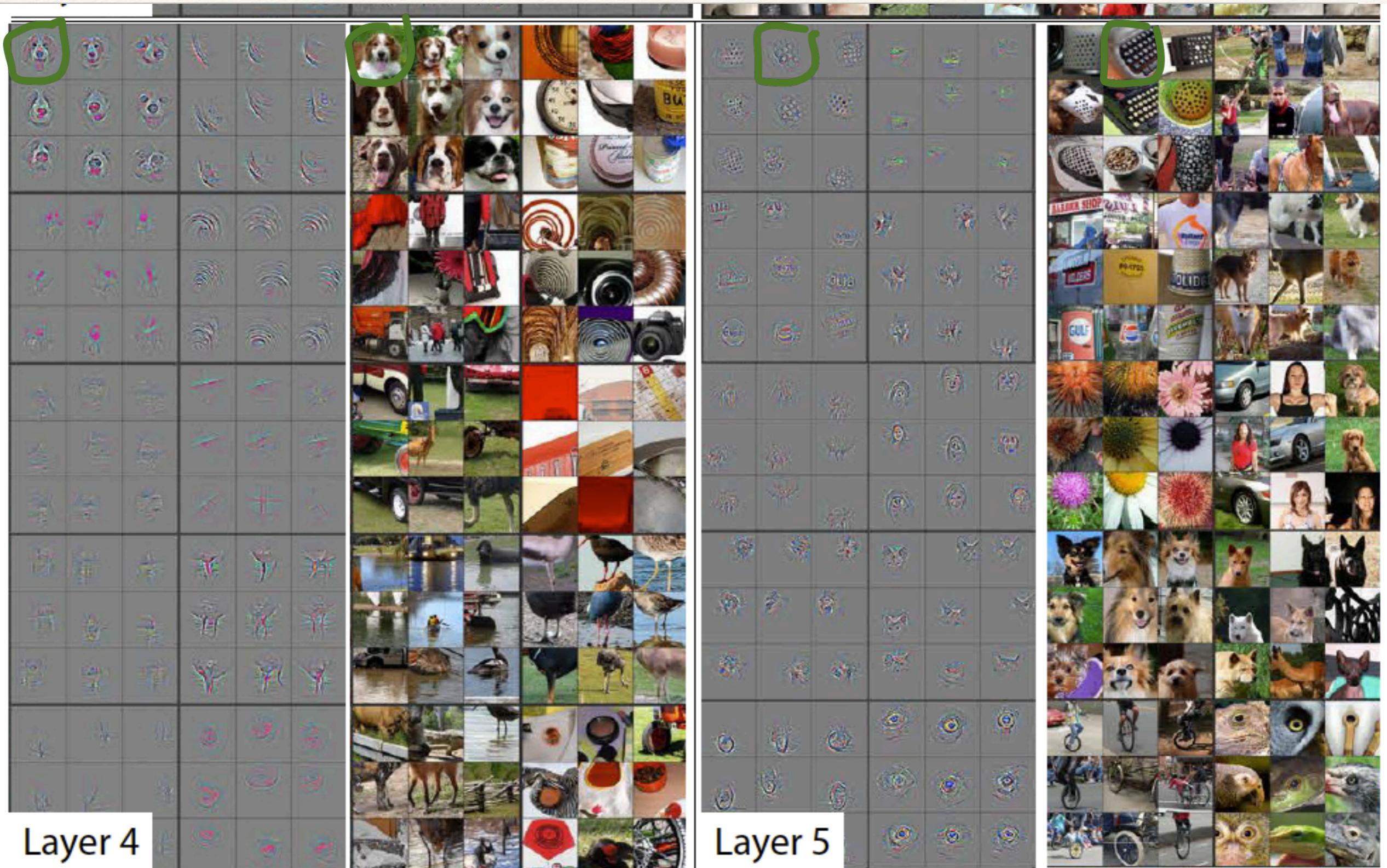




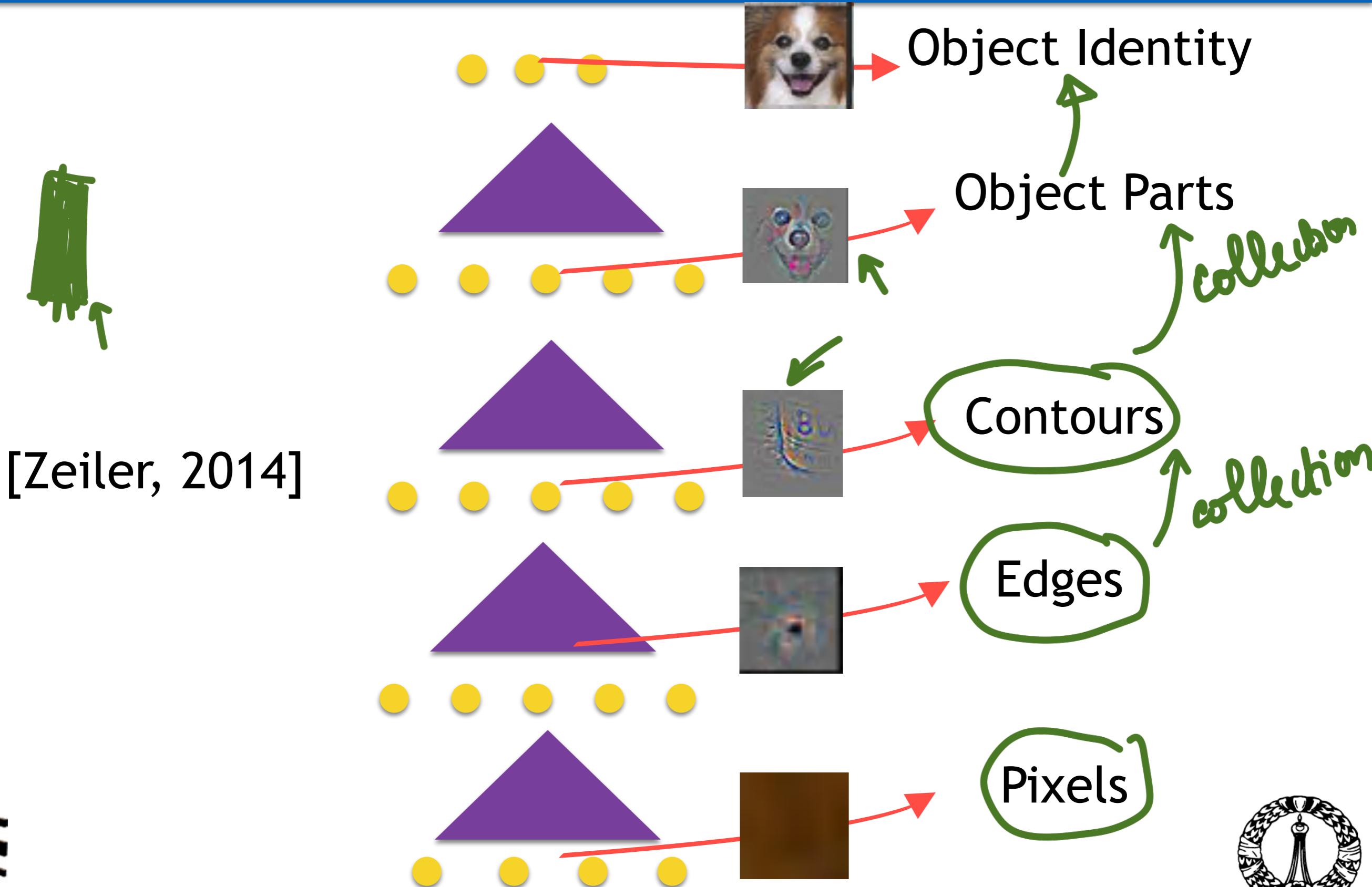
Understanding Deep Networks



Understanding Deep Networks



Representation Learning in Deep Networks



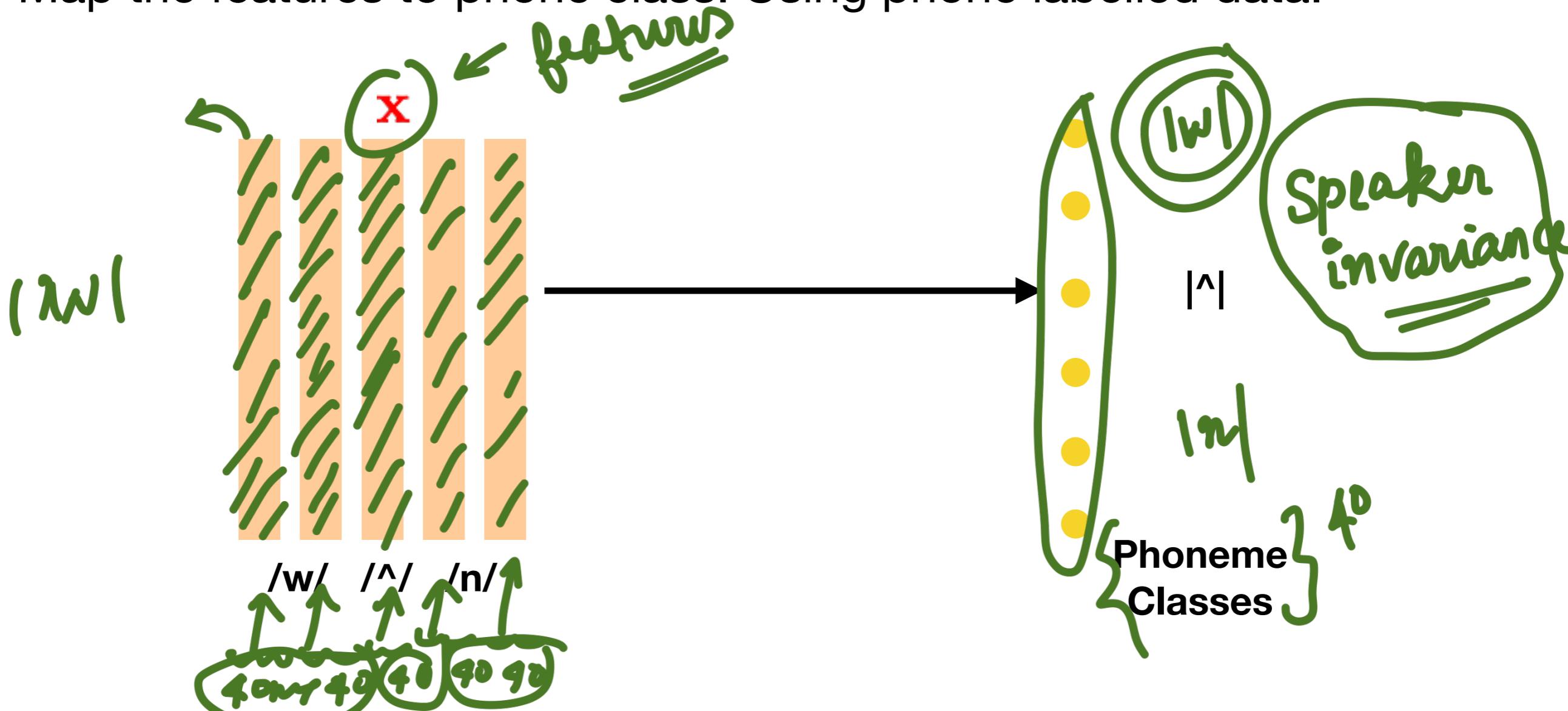
UNDERSTANDING HOW DEEP BELIEF NETWORKS PERFORM ACOUSTIC MODELLING

Garcia-Romero, Daniel, et al. "Speaker diarization using deep neural network embeddings." *2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2017.

Department of Computer Science, University of Toronto

Speech Recognition

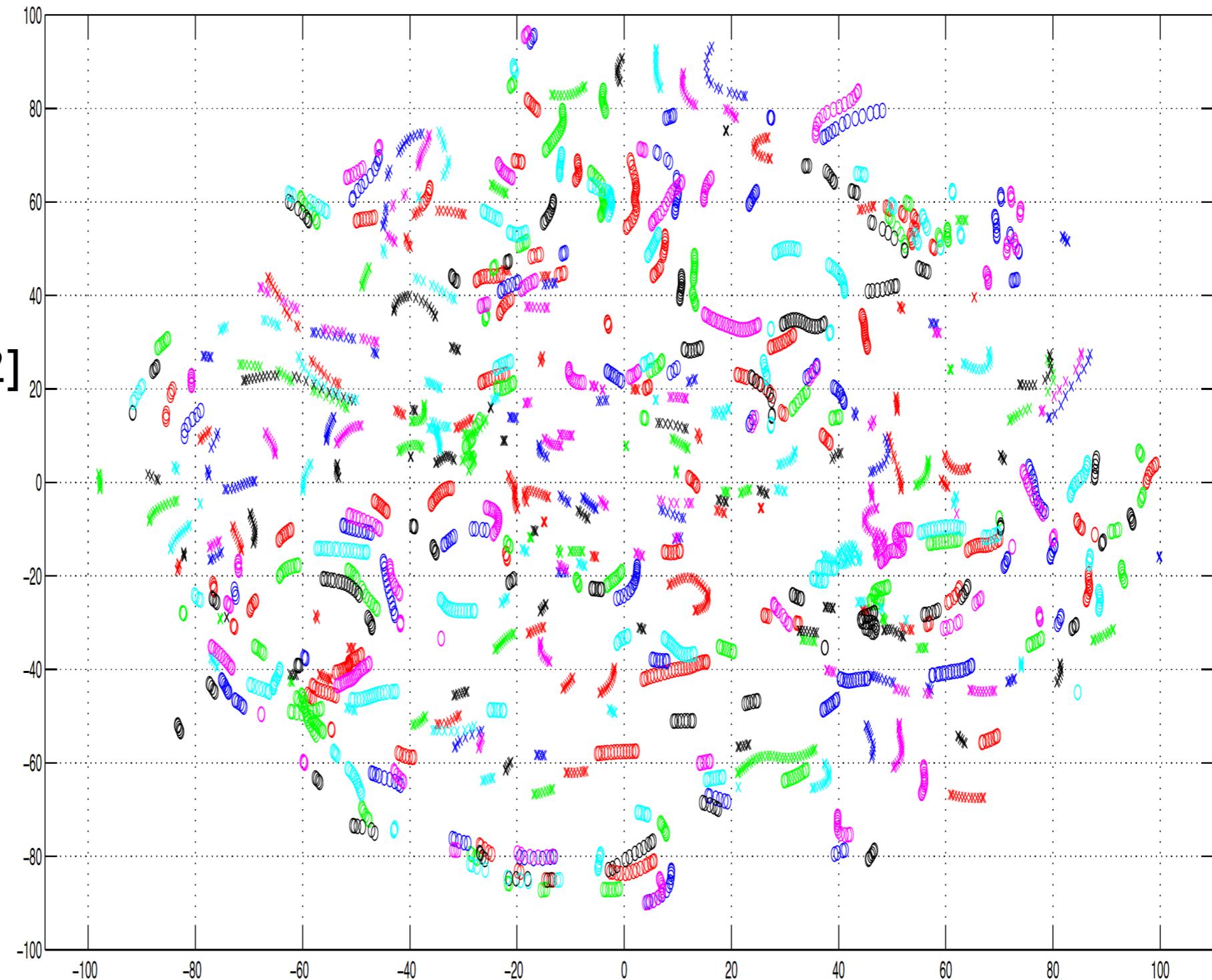
- Map the features to phone class. Using phone labelled data.



- Classical machine learning - train a classifier on speech training data that maps to the target phoneme class.

Understanding DNNs for Speech

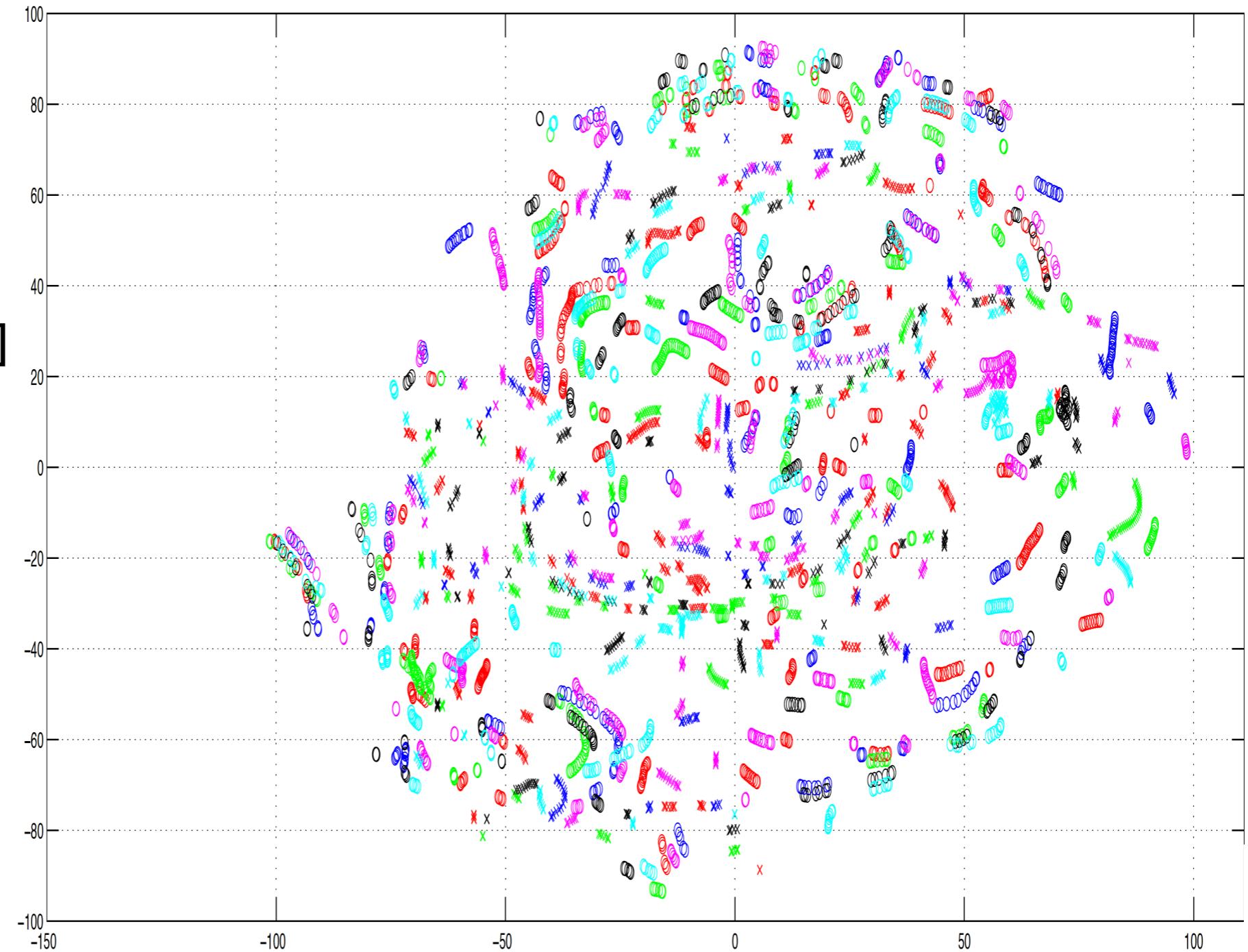
2-D projection of 1st layer DNN



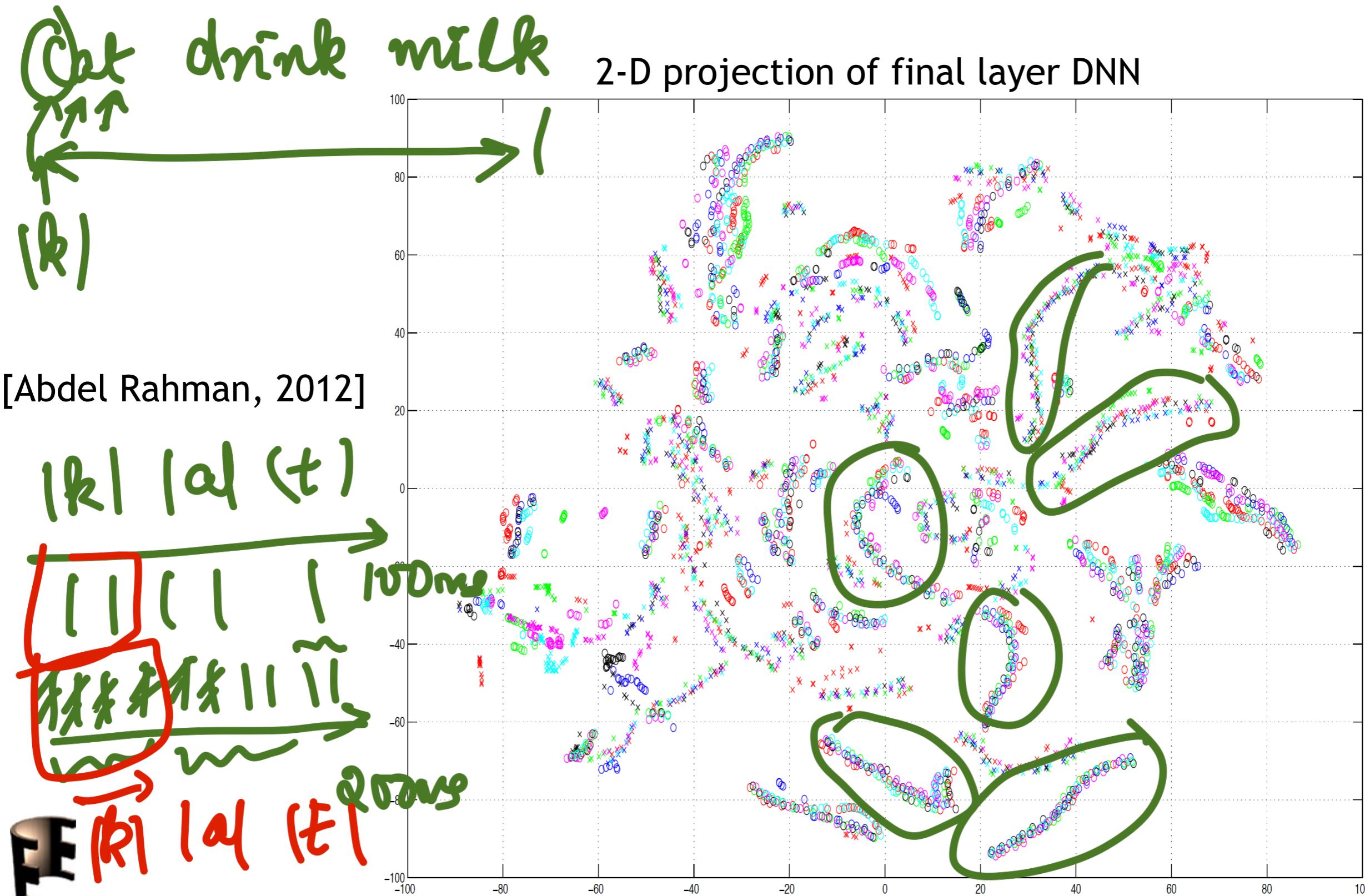
Understanding DNNs for Speech

2-D projection of 2nd layer DNN

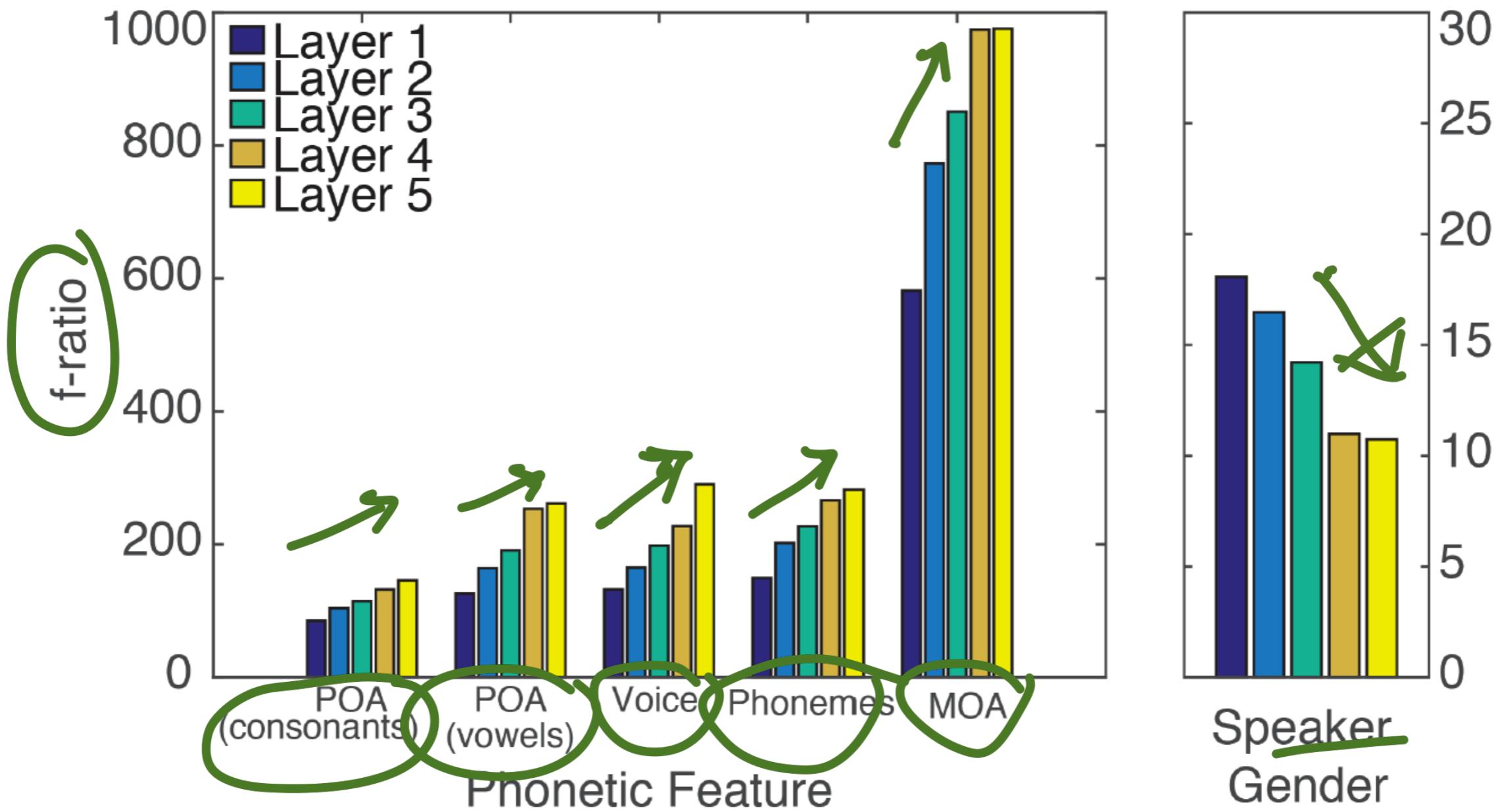
[Abdel Rahman, 2012]



Understanding DNNs for Speech



Understanding DNNs for Speech



[Nagamine, 2015]