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Understanding Deep Networks

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS VOL. 23, NO. 1, JANUARY 2017

Visualizing the Hidden Activity of Artificial Neural Networks

Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcdo, and Alexandru C. Telea



Understanding Deep Networks

hidden

output activation a‘®
layer(s)

(class assignment)

input activation x = a()
(observation)

input dataset )
output class assignments

layer-2 activation a(?)
(learned representation)



Understanding Deep Networks

SVHN dataset
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Understanding Deep Networks

CIFAR-10
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Table 1. Test Set Accuracies for our Two Architectures

EEETES VR |

— Model | \pp CNN | State-of-the-art
MNIST | 98.52% | 99.62% | 99.79% [47]
SVHN 77.38% | 93.76% | 98.08% [23]

CIFAR-10 | 5291% | 79.19% | 91.78% [23]
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Understanding Deep Networks
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K5 Ao of the neural network.

class 3
:rud m 5:!:11[.0'1 5 predcion: 5

csss f‘ Fig. 3. Projection of the(last MLP hidden layer activationg) MNIST test

subset. a) Before training (NH: D) After training (NH: 98.36%,

AC: 99.15%). Inset shows classmcatnon ofvnsual outhers:
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Fig. 4. Projection of the last MLP hidden layer activations before training,
SVHN test subset (NH: 20.94%). Poor class separation is visible.

SvHw

Fig. 5. Projection of the MLP hidden layer activations after training,
SVHN test subset. a) First hidden layer (NH: 52.78%). b) Last hidden
layer (NH: 67%).



CIFAR-10
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Fig. 9. Projection of last CNN hidden layer activations after training,
CIFAR-10 test subset (NH: 53.43%, AC: 78.7%).
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Fig. 11. Inter-epoch evolution, last CNN hidden layer, epochs 0-100, in
steps of 20, MNIST test subset. Brighter trail parts show later epochs.



Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science,
New York University, USA
{zeiler,fergus}@cs.nyu.edu
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Understanding Deep Networks
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Representation Learning in Deep Networks

& Object Identity

]

Object Parts

)

[Zeiler, 2014]



UNDERSTANDING HOW DEEP BELIEF NETWORKS PERFORM ACOUSTIC MODELLING

Garcia-Romero, Daniel, et al. "Speaker diarization using deep neural network embeddings." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
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(ICASSP). IEEE, 2017. ’ D ’

Department of Computer Science, University of Toronto



Speech Recognition

* Map the features to phone class. Using phone labelled data.
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that maps to the target phoneme class.
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tanding DNNSs for Speech
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Understanding DNNs for Speech

2-D projection of 2nd layer DNN
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Understanding DNNs for Speech
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