Deep Learning: Theory and Practice

Deep Learning 28-02-2019

deeplearning.cce2019@gmail.com

Established



Neural Networks

Multi-layer Perceptron [Hopfield, 1982]
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 Useful for classifying non-linear data boundaries -
non-linear class separation can be realized given

g enough data.




Neural Networks

Types of Non-linearities ¢
tanh sigmoid Relu
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Cost-Function

Mean Square Error Cross Entropy
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Learning Posterior Probabilities with NNs

Neural networks predict posterior probabilities [Richard, 1991}
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- When DNNs are trained with CE or MSE
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Neural networks estimate conditional expectation of the
desired targets given the input

When the targets are discrete classes y = [0 0 ..0 1 0 ..0]
conditional expectation is the class posterior !

Richard, Michael D., and Richard P. Lippmann. "Neural network classifiers estimate Bayesian a posteriori probabilities." Neural computation 3.4 (1991): 461-483.



Learning Posterior Probabilities with NNs

Choice of target function 1)

« Softmax function for classification

h(vs) = Ze ev

 Softmax produces positive values that sum to 1
 Allows the interpretation of outputs as posterior
probabilities




Parameter Learning

vi=1 (W2¢(W1x +b') + bz)

- Error function for entire data

Typical Error Surface as a
function of parameters
(weights and biases)




Parameter Learning

Error surface close to a local optima

Non-linear nature of error
function
« Move in the reverse
direction of the gradient
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Parameter Learning

Solving a non-convex
optimization.

Iterative solution.

Depends on the initialization.
Convergence to a local
optima.

Judicious choice of learning
rate

loss

low learning rate

high learning rate

good learning rate

epoch



Summary so far...

- Neural networks as discriminative classifiers
« Need for hidden layer

« Choice of non-linearities and target functions
 Estimating posterior probabilities with NNs

- Parameter learning with back propagation.




Need ror Deep Networks

Modeling complex real world data like speech, image, text
- Single hidden layer networks are too restrictive.
+ Needs large number of units in the hidden layer and
trained with large amounts of data.
+ Not generalizable enough.
Networks with multiple hidden layers - deep networks
(Open questions till 2005)
 Are these networks trainable ?

« How can we initialize such networks ?

@ - Will these generalize well or over train ?



Deep Networks Intuition

Neural networks with multiple hidden layers - Deep

networks [Hinton, 2006}
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Deep Networks Intuition

Neural networks with multiple hidden layers - Deep
networks
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Deep Networks Intuition

Neural networks with multiple hidden layers - Deep
networks
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Summary so far...

- Linear models to neural network.
« Deep Neural networks as extensions of NNs.

« Intuition behind behind multiple hidden layers




Deep Networks

- Will the networks generalize with deep networks

- DNNs are quite data hungry and performance
improves by increasing the data.
- Generalization problem is tackled by providing
training data from all possible conditions.
- Many artificial data augmentation methods have
been successfully deployed
 Providing the state-of-art performance in several

real world applications.
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Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system.

Cartesian Coordinates Polar Coordinates




Representation Learning in Deep Networks

- The input data representation is one of most important
components of any machine learning system.
- Extract factors that enable classification while
suppressing factors which are susceptible to noise.

- Finding the right representation for real world applications -
substantially challenging.
- Deep learning solution - build complex representations
from simpler representations.
- The dependencies between these hierarchical
representations are refined by the target.
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Representation Learning in Deep Networks
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[Zeiler, 2014]




