Deep Learning: Theory and Practice

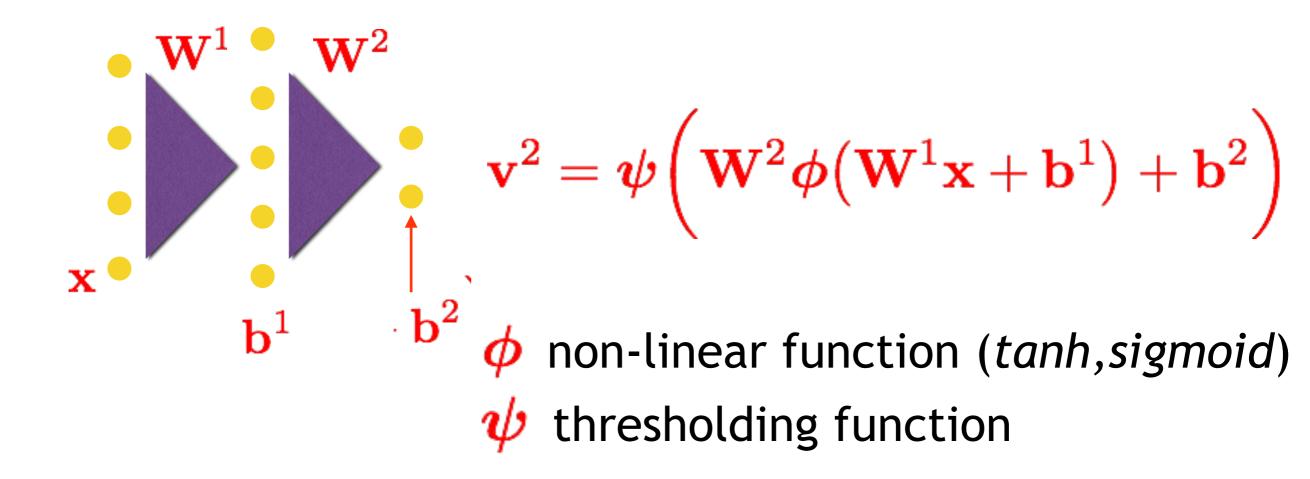
Deep Learning

28-02-2019

deeplearning.cce2019@gmail.com

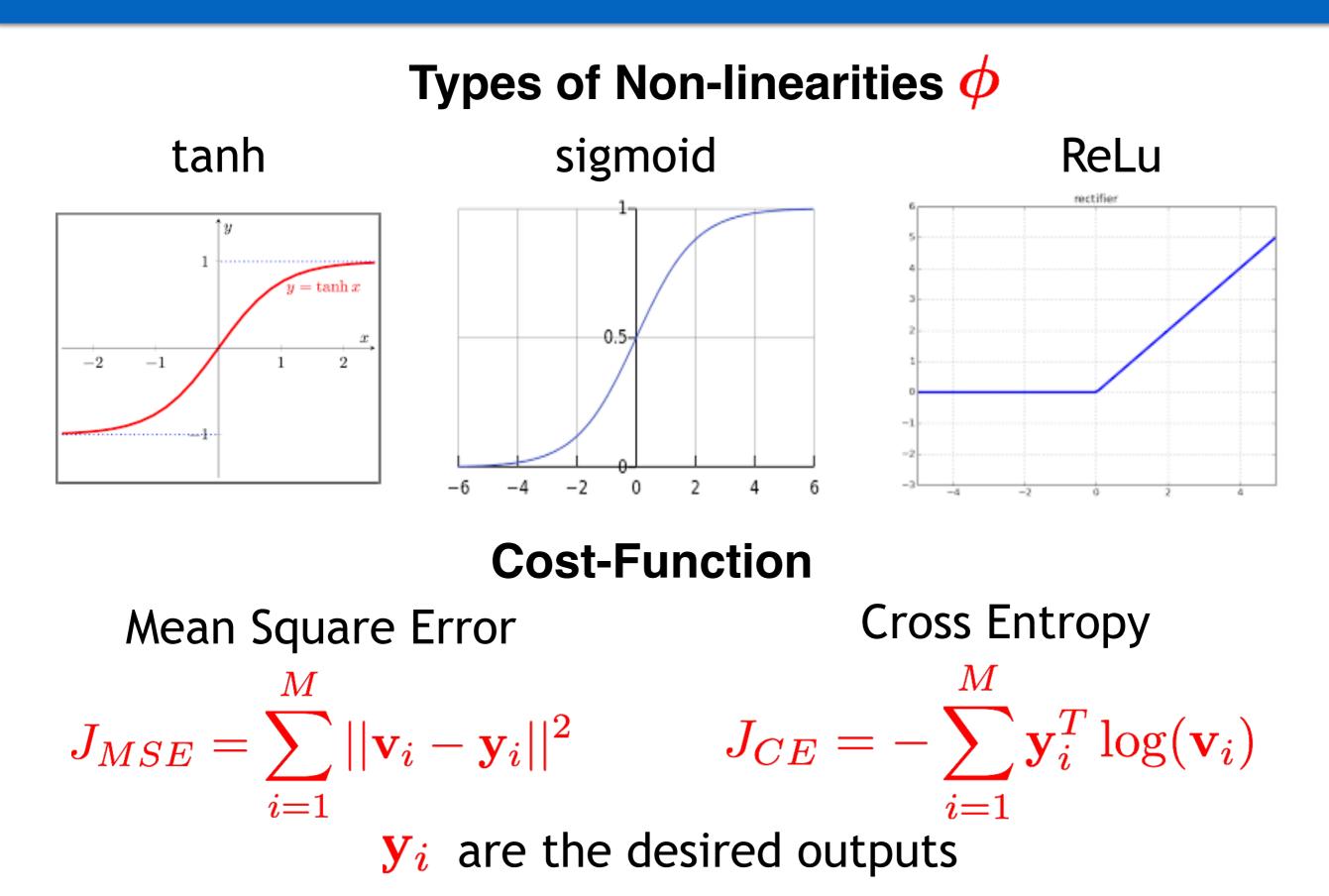
Neural Networks

Multi-layer Perceptron [Hopfield, 1982]



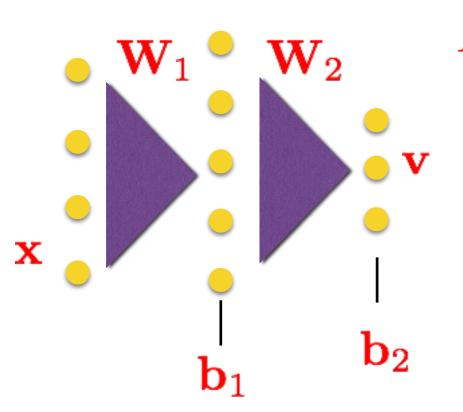
 Useful for classifying non-linear data boundaries non-linear class separation can be realized given enough data.

Neural Networks



Learning Posterior Probabilities with NNs

Neural networks predict posterior probabilities [Richard, 1991]



$$P(C_i | \mathbf{X}) = \frac{p(\mathbf{X} | C_i) p(C_i)}{p(\mathbf{X})}$$

When DNNs are trained with CE or MSE

$$\mathbf{v}(\mathbf{x}) = \mathcal{E}_{y|\mathbf{X}=\mathbf{x}}[\mathbf{y}]$$

Neural networks estimate conditional expectation of the desired targets given the input

When the targets are discrete classes $\mathbf{y} = \begin{bmatrix} 0 & 0 & ..0 & 1 & 0 & ..0 \end{bmatrix}$ conditional expectation is the class posterior !

Richard, Michael D., and Richard P. Lippmann. "Neural network classifiers estimate Bayesian a posteriori probabilities." Neural computation 3.4 (1991): 461-483.

Learning Posterior Probabilities with NNs

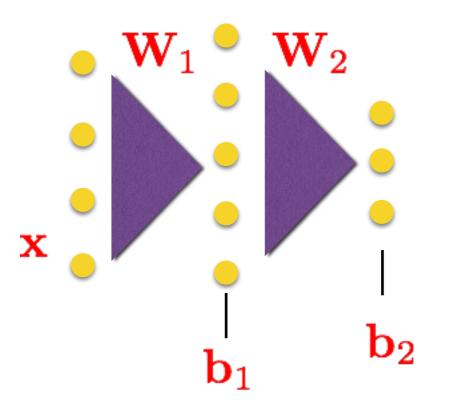
Choice of target function ψ

Softmax function for classification

$$\psi(v_i) = \frac{e^{v_i}}{\sum_i e^{v_i}}$$

- Softmax produces positive values that sum to 1
- Allows the interpretation of outputs as posterior probabilities

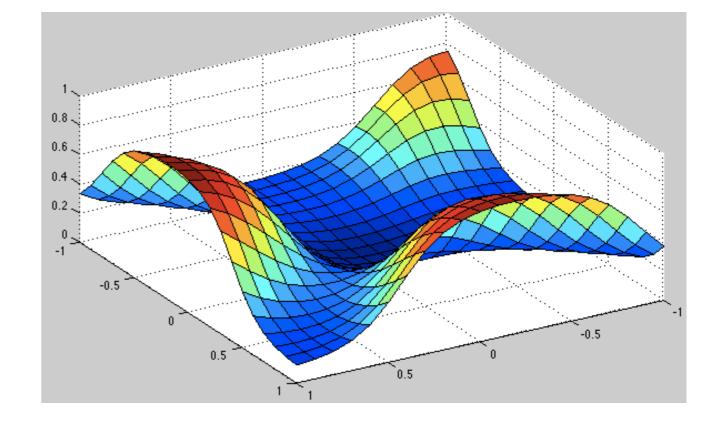
Parameter Learning



$$\mathbf{v}^{2} = \boldsymbol{\psi} \left(\mathbf{W}^{2} \boldsymbol{\phi} (\mathbf{W}^{1} \mathbf{x} + \mathbf{b}^{1}) + \mathbf{b}^{2} \right)$$

Error function for entire data
$$J_{MSE} = \sum_{i=1}^{M} ||\mathbf{v}_{i} - \mathbf{y}_{i}||^{2}$$

Typical Error Surface as a function of parameters (weights and biases)



Parameter Learning

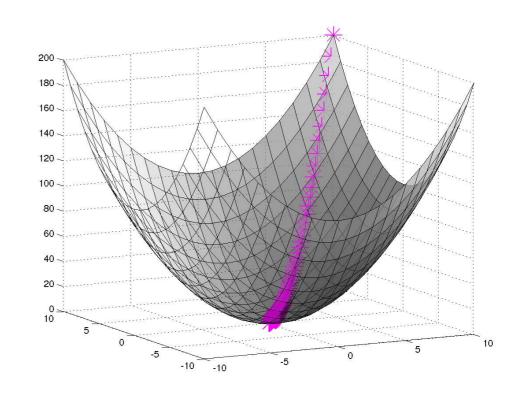
Error surface close to a local optima

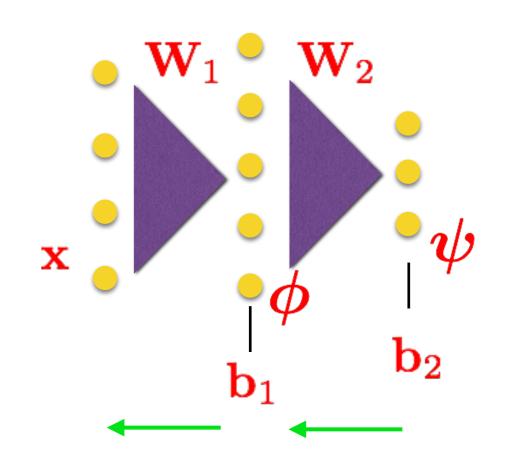
- Non-linear nature of error function
 - Move in the reverse direction of the gradient

$$\boldsymbol{W}_{1}^{t} = \boldsymbol{W}_{1}^{t-1} - \eta \frac{\partial J}{\partial \boldsymbol{W}_{1}}$$

Error back propagation

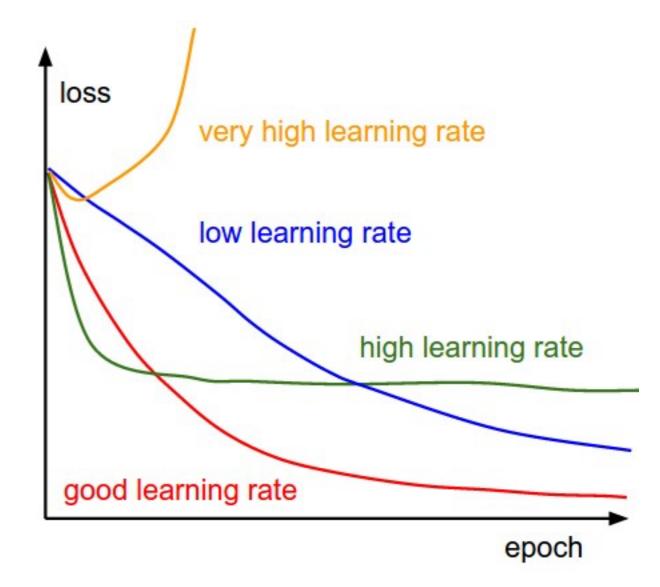
$$\frac{\partial J}{\partial \mathbf{W}_1} = \frac{\partial J}{\partial \psi} \times \frac{\partial \psi}{\partial \phi} \times \frac{\partial \phi}{\partial \mathbf{W}_1}$$





Parameter Learning

- Solving a non-convex optimization.
- Iterative solution.
- Depends on the initialization.
- Convergence to a local optima.
- Judicious choice of learning rate



Summary so far...

- Neural networks as discriminative classifiers
- Need for hidden layer
- Choice of non-linearities and target functions
- Estimating posterior probabilities with NNs
- Parameter learning with back propagation.

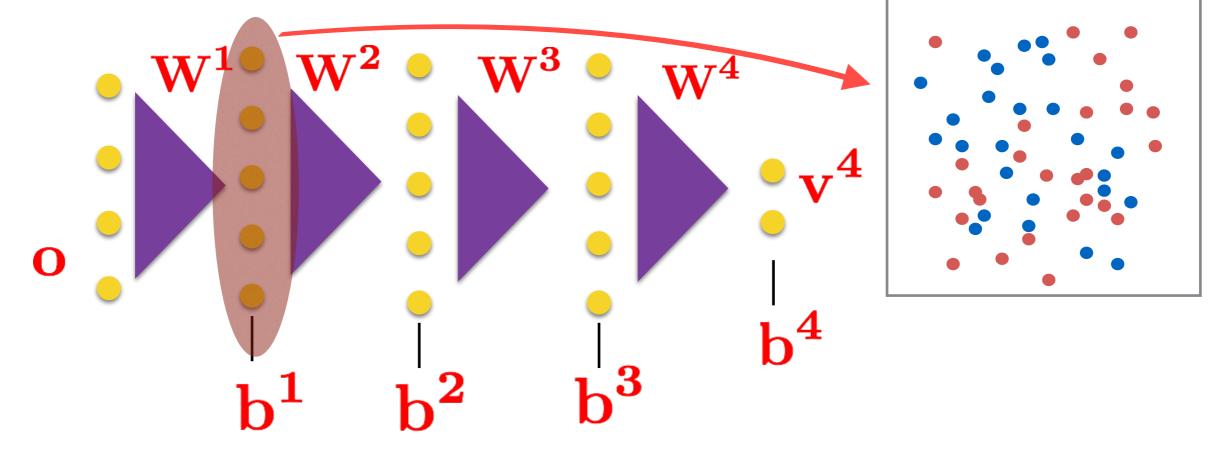
Need For Deep Networks

Modeling complex real world data like speech, image, text

- Single hidden layer networks are too restrictive.
- Needs large number of units in the hidden layer and trained with large amounts of data.
- Not generalizable enough.
- Networks with multiple hidden layers deep networks
- (Open questions till 2005)
 - Are these networks trainable ?
 - How can we initialize such networks ?

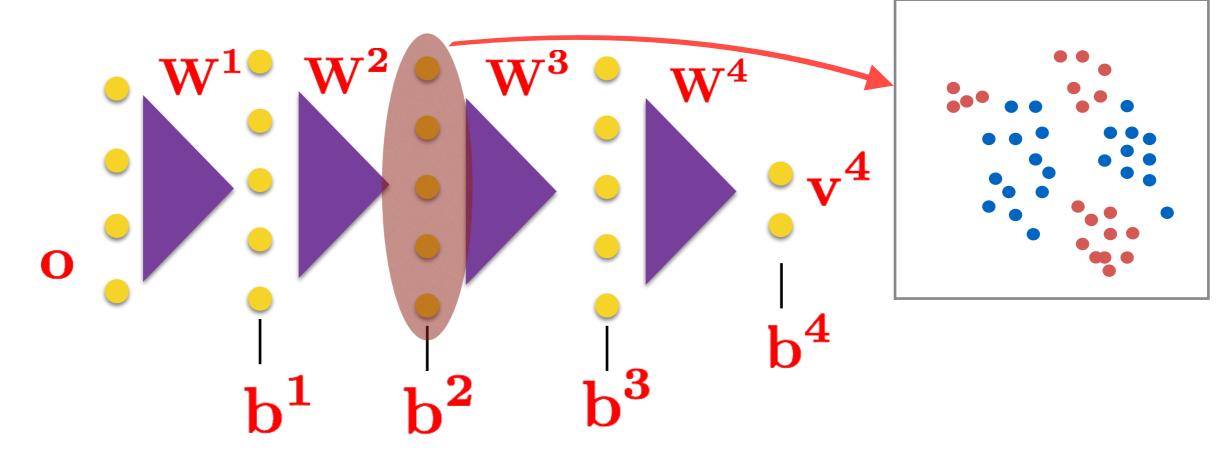
Deep Networks Intuition

Neural networks with multiple hidden layers - Deep networks [Hinton, 2006]



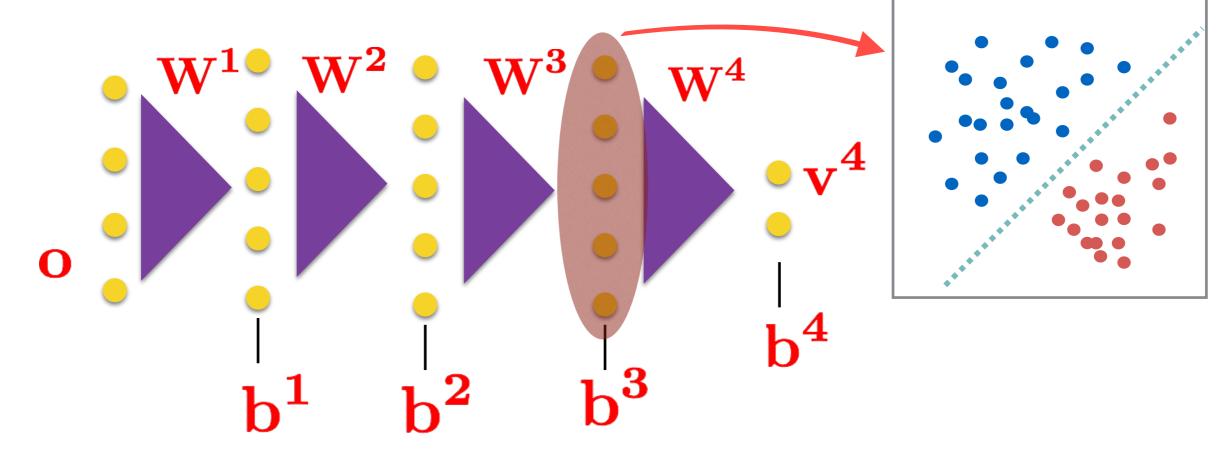
Deep Networks Intuition

Neural networks with multiple hidden layers - Deep networks



Deep Networks Intuition

Neural networks with multiple hidden layers - Deep networks



Deep networks perform hierarchical data abstractions which enable the non-linear separation of complex data samples.

Summary so far...

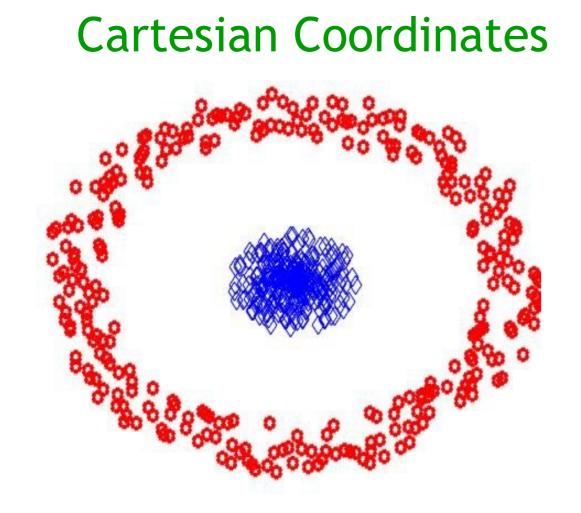
- Linear models to neural network.
- Deep Neural networks as extensions of NNs.
- Intuition behind behind multiple hidden layers

Deep Networks

- Will the networks generalize with deep networks
 - DNNs are quite data hungry and performance improves by increasing the data.
 - Generalization problem is tackled by providing training data from all possible conditions.
 - Many artificial data augmentation methods have been successfully deployed
 - Providing the state-of-art performance in several real world applications.

Representation Learning in Deep Networks

 The input data representation is one of most important components of any machine learning system.



Polar Coordinates

Representation Learning in Deep Networks

- The input data representation is one of most important components of any machine learning system.
 - Extract factors that enable classification while suppressing factors which are susceptible to noise.
- Finding the right representation for real world applications substantially challenging.
 - Deep learning solution build complex representations from simpler representations.
 - The dependencies between these hierarchical representations are refined by the target.

Representation Learning in Deep Networks

