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Logistic Regression
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Least Squares versus Logistic Regression
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Least Squares versus Logistic Regression
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Underfit

@ The model is not able to capture the variability in the data (Linear
Model)

@ Both the training and testing error are high (15%,20%)

@ Try to learn a more complex model — more features, more hidden
neurons, decrease regularization

@ More data would not help

(Courtesy - Dr D. Vijayasenan, NITK)



Overfit

@ The model is capturing data as well as accidental variations (100
hidden neurons)

@ Training error is too low and testing error is too high (0%, and 16%)

@ Try to learn a simpler model — less features, less hidden neurons,
Increase regularization

@ More data would help

(Courtesy - Dr D. Vijayasenan, NITK)



Compromise

@ Reasonable training and test errors — (4%, 8%)

@ Appropriate model — capturing only the global characteristics not
details

(Courtesy - Dr D. Vijayasenan, NITK)



Summary so far ...

Maximum Likelihood

Linear Least Squares Classifiers

Logistic Regression

“ Application of ML to Logistic Regression
# (Gradient Descent

* Coding Logistic regression

Bishop - PRML book (Chap 3)
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Training, Validaton and Test Set

Original Set

Training Testing

Training Validation Testing




Perceptron Algorithm

Perceptron Model [McCulloch, 1943, Rosenblatt, 1957}

Targets are binary classes [-1,1] | * « %",

What if the data is not
linearly separable




Mulu-layer Perceptron

Multi-layer Perceptron [Hopfield, 1982}
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@ non-linear function (tanh,sigmoid)
1) thresholding function



