Deep Learning - Theory and Practice

Basics of Machine Learning

17-01-2019

http://leap.ee.iisc.ac.in/sriram/teaching/DL19/

deeplearning.cce2019@gmail.com

Problems in Decision Theory

- Decision Theory
 - Inference problem
 - * Finding the joint density $p(\mathbf{x}, \mathbf{t})$
 - Decision problem
 - Using the inference to make the classification or regression decision

Decision Problem - Classification

- Minimizing the mis-classification error
- * Decision based on maximum posteriors $argmax_j \ p(C_j | \mathbf{x})$
- Loss matrix
 - Can be used for non uniform error weighting.

Decision Theory

Approaches for Inference and Decision

I. Finding the joint density from the data.

 $p(C_k|\mathbf{x}) \ \alpha \ p(\mathbf{x}|C_k)p(C_k)$

II. Finding the posteriors directly.

Neural Networks

III. Using discriminant functions for classification.

Advantages of Posteriors

- * Minimizing the risk
- Reject Option
- Combining models
- Compensating for class priors

Loss Function for Regression

* With a mean square error loss

$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \,\mathrm{d}\mathbf{x} \,\mathrm{d}t.$$

 The problem boils down to conditional expectation of the data given the

Regression Problem

