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Introduction

* The standard DNN /CNN paradigms

“ (x,y) - ordered pair of data vectors/images (x) and
target (y)

* Moving to sequence data

+ (x(t),y(t)) where this could be sequence to sequence
mapping task.

“ (x(t),y) where this could be a sequence to vector
mapping task.



Introduction

+ Difference between CNNs/DNNs

# (x(t),y(t)) where this could be sequence to sequence
mapping task.

* Input features / output targets are correlated in time.

# Unlike standard models where each pair is
independent.

* Need to model dependencies in the sequence over
time.



Introduction to Recurrent Networks
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Recurrent Networks

Unfold
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Recurrent Networks

ad? = b+ whrY Uz

h'Y) = tanh(a'")
o) = ¢+ Vh®
7Y = softmax(o®)

L({z®,..., 2D}, {yV,...,y"})

— Z It
t

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville



Back Propagation in RNNs
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Recurrent Networks
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Back Propagation Through Time
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Back Propagation Through Time




Long-term Dependency Issues
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Vanishing/Exploding Gradients
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+ Gradients either vanish or explode

« Initial frames may not contribute to gradient
computations or may contribute too much.



Long-Short Term Memory
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Long Short Term Memory Networks
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Gated Recurrent Units (GRU)

LSTM A
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GRU - gated recurrent unit
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reset gate Update gate

2t = 0O (Wz ‘ :ht—laxt:>
g = U(Wr ; :ht—laxt:)
ilt = {anh (W : [Tt * ht—la xt])

ht:(l—zt)*ht_l—'-zt*ilt

It combines the forget and input into a single update gate.
It also merges the cell state and hidden state. This is simpler
than LSTM. There are many other variants too.

X,*: element-wise multiply



Standard Recurrent Networks

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville
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Other Recurrent Networks

Teacher
Forcing Networks

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville



Recurrent Networks

Teacher
Forcing Networks

©

Train time Test time

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville



Recurrent Networks

Multiple Input
Single Output




Recurrent Networks

Single Input
Multiple Output




Recurrent Networks
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Recurrent Networks

“

Sequence to
Sequence
Mapping Networks




Attention Models
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Encoder - Decoder Networks with Attention

A= <end>
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Knowledge IS power <end>



