Deep Learning: Theory and Practice

Advanced Topics in Deep Learning

11-04-2019

Back propagation in Pooling Layers

Resnet Architecture

Network in Network

Inception Network

"Deep Learning", Ian Goodfellow, Yoshua Bengio, Aaron Courville

Mixing Convolutional and LSTM networks

Figure 4: The CNN-LSTM structure. The CNNs extract deep features of the plant images and then, the growth pattern of the plant is modeled using LSTMs. Finally the genotype with highest class score is selected.

Deep Unsupervised Learning

Restricted Boltzmann Machines

$$P(\mathbf{v} = \mathbf{v}, \mathbf{h} = \mathbf{h}) = \frac{1}{Z} \exp\left(-E(\mathbf{v}, \mathbf{h})\right)$$

$$E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\top}\boldsymbol{v} - \boldsymbol{c}^{\top}\boldsymbol{h} - \boldsymbol{v}^{\top}\boldsymbol{W}\boldsymbol{h},$$

$$Z = \sum_{\boldsymbol{v}} \sum_{\boldsymbol{h}} \exp\left\{-E(\boldsymbol{v}, \boldsymbol{h})\right\}$$

A Symmetrical, Bipartite, Bidirectional Graph with Shared Weights

Restricted Boltzmann Machine

PCA

RBM

Autoencoders

Avoid Identity Mapping

Autoencoders

WWW.BLOGS.KERAS.IO

Convolutional Autoencoders

latent vector / variables

The latent vectors can form deep features for other supervised tasks.

Adversarial Learning

Generative Adversarial Networks (GANs)

DCGANs

Regularization in Deep Learning

Dropout

(a) Standard Neural Net

(b) After applying dropout.