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Introduction

* The standard DNN /CNN paradigms

“ (x,y) - ordered pair of data vectors/images (x) and
target (y)

* Moving to sequence data

+ (x(t),y(t)) where this could be sequence to sequence
mapping task.

“ (x(t),y) where this could be a sequence to vector
mapping task.



Introduction

+ Difference between CNNs/DNNs

# (x(t),y(t)) where this could be sequence to sequence
mapping task.

* Input features / output targets are correlated in time.

# Unlike standard models where each pair is
independent.

* Need to model dependencies in the sequence over
time.



Introduction to Recurrent Networks
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Recurrent Networks
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Recurrent Networks
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Back Propagation in RNNs
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Recurrent Networks
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Back Propagation Through Time
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Back Propagation Through Time




Standard Recurrent Networks

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville
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Other Recurrent Networks

Teacher
Forcing Networks

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville



Recurrent Networks

Teacher
Forcing Networks
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Train time Test time

“Deep Learning”, Ian Goodfellow, Yoshua Bengio, Aaron Courville



Recurrent Networks

Multiple Input
Single Output




Recurrent Networks

Single Input
Multiple Output
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Recurrent Networks

“

Sequence to
Sequence
Mapping Networks




Long-term Dependency Issues
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+ Gradients either vanish or explode

« Initial frames may not contribute to gradient
computations or may contribute too much.



Long-Short Term Memory
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Long Short Term Memory Networks




Gated Recurrent Units (GRU)

LSTM A
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GRU - gated recurrent unit
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2t = 0O (Wz ‘ :ht—laxt:>
g = U(Wr ; :ht—laxt:)
ilt = {anh (W : [Tt * ht—la xt])
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It combines the forget and input into a single update gate.
It also merges the cell state and hidden state. This is simpler
than LSTM. There are many other variants too.

X,*: element-wise multiply



Attention in LSTM Networks
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+ Attentions allows a mechanism to add relevance

« Certain regions of the audio have more importance
than the rest for the task at hand.



Encoder - Decoder Networks with Attention

A= <end>
l | | | l l l
Encoder €@ — e |—m| ez |—m e |/ es _> es | — | e
!
Decoder do —_ d1 —_— d —_ ds;
l l l |

Knowledge IS power <end>



Attention Models
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Attention - Speech Example

From ole a0 [part e IC - oor 201 ) paper|.



Language Recognition Evaluation

Table 1: LREI17 training set : target languages, language clus-
ters and total number of hours.

Cluster  Target Languages Hours
Egyptian Arabic (ara-arz) 190.9
Arabic [raqi Arabic (ara-acm) 130.8
Levantine Arabic (ara-apc) 440.7

Maghrebi Arabic (ara-ary) 81.8
Chinese Mandarin (zho-cmn) 379.4

Min Nan (zho-nan) 13.3

Enelish British English (eng-gbr) 4.8

© General American English (eng-usg) 327.7

. Polish (gsl-pol) 59.3

Slavic Russianq(qsll)-rus) 69.5
Caribbean Spanish (spa-car) 166.3

Iherian European Spanish (spa-eur) 24.7

Latin American Continental Spanish (spa-lac) 175.9
Brazilian Portuguese (por-brz) 4.1




End-to-end model using GRUs and Attention

-------------------------------------------------------------
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Proposed End-to-End Language Recognition Model
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Proposed End-to-End Language Recognition Model
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Proposed End-to-End Language Recognition Model
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Language Recognition Evaluation

- Dtate-of-art models use the input sequence directly.

- We proposed the attention model - Attention weighs tl
importance of each short-term segment feature for the
task.

m m 0-3s 0O...One muscle at all, it was terrible
3s-4s : .... ah .... ah ....
4s - 9s

9s -11s I was trying me hardest, I was really

really panicking.

Bharat Padi, et al. “End-to-end language recognition using

hierarchical gated recurrent networks”, under review 2018.



Language Recognition Evaluation
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Language Recognition Evaluation

Table 3. Approximate computational time in seconds for ten 30sec
eval files using a single CPU. Machine Specification: 32 CPU, 8
core, 2 thread Intel x86_64 machine with 16 GB Nvidia Quadro

P5000 GPU cards.
ivec. [19] | LSTM [16] | HGRU
CPU 12 51 8
GPU 12 11.5 1.5

Table 4. LID accuracy in % for additional experiments with multiple
speakers speaking the same language and the experiments without
any SAD information.

Cond. 1-vec. [19] | HGRU
Multi-Speaker 60.6 67.7
Without SAD information 49.7 52.7




