(@iisc.ac.ln

f sﬂramg

o

R"

'Ilgachmg Assstat Akshara Soman Prach1 Singh, ]as‘v\“r’anth Red’d.;y

'.;;;http

-— S T

//leap.ee. 1isc.ac.in/sriram/teaching/AELZ02O/

=il


mailto:sriramg@iisc.ac.in
mailto:aksharas@iisc.ac.in
mailto:prachis@iisc.ac.in
mailto:jaswanthk@iisc.ac.in
http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/

Recap of previous class




State of aftfairs

* LSTM models
* Bidirectional RNNs
* Seq2vec and veciaSeq models

* Encoder-decoder models.




Encoder-decoder models




Encoder-decoder models
* Multiple input multiple output (with different label index) - Seqg2seq

y(S) y(2) y(1) y(0)

-/




Encoder-decoder models

* Encoder — convert sequence x = {x(1)....x(7)} to vector

h(t) = f(h(t —1),x(?))
€ — f,(hl, e hT)

* The encoder can have multiple deep RNN layers.

* For simplicity
€ — hT




Encoder-decoder models

* Encoder — convert sequence x = {x(1),..x(T)} to vector e

* Decoder — converts the vector embedding from the encoder to the output
sequence vy = {y(1),...y(9)} with different label index.

S
p(§) = || pF(s)l5(1),....9(s — 1))

* RNN decoder assumption

p(¥(s)[F(1),...5(s = 1)) = p(¥(s)[y(s — 1),e) = softmax(Vy(s — 1) + Re(s — 1) + Te + d)
c(s) = flc(s —1),e)

* The decoder can also have multiple layers of deep RNNs before softmax.




Encoder-decoder models

* Encoder — convert sequences to vectors

* Decoder — converts the vector embedding from the encoder to the output
sequence with different label index.

v Start and end label are also encoded as output vector indices.
* Enable the starting and ending of the output sequence.
* Assumption
v The entire input sequence can be represented as a single vector e

* May not be able to perform this efficiently for long sequences.




Encoder-decoder models

* Modification of encoder-decoder model

p(¥(s)[F(1),...5(s = 1)) = p(y(s)[3(s — 1),e) = softmar(Vy(s — 1) + Rc(s — 1) + Te + d)

p(F(s)F(1), ... (s = 1)) = p(F()[F(s — 1), e(s)) = softmax(Vy(s — 1) + Re(s — 1) + Te(s) + d)
* where
T
e(s) = Z a(s,t)h(t)
t=1




Encoder-decoder models

x Obtaining the relative contribution «/(s,?)

v Implementing this automatically using network-in-network

Attention network

I a(s,t) = Alc(s —1); h(t)
I ] a(s.1) = S(a(s, 1)) = —TPLals )

— 3, exp(a(s, )

v The values «(s, 1) are called attention weights.




Visualizing attention




Visualizing attention

Encoder
nidden
state




Analysis of attention networks

* Attention weights (s, 1)
v Probability of inking (attending) to input at t for generating output at s

v Usetul in analyzing the internal structure of the encoder-decoder model

agreement
on

the
European
Economic
Area

was
signed

in
August
1992
<end>

r
l The

Visualizing the attention weights

accord
sur

la
zone

Reading Assignment - “Neural Machine Translation  économique
by JOlntly Learning tO Ahgn and Translate” européenne

https://arxiv.org/pdf/1409.0473.pdf e
signé
ao?i:
1992

<end>




Analysis of attention networks

* Attention weights (s, 1)
v Probability of inking (attending) to input at t for generating output at s

v Usetul in analyzing the internal structure of the encoder-decoder model

environment
environments

3 3. £ u 2 S
Visualizing the attention weights NElbi=dtetuletal S R I
convie;; B
noter .
que
. " -
Reading Assignment - “Neural Machine Translation """ ..
by Jointly Learning to Align and Translate” est I.
https://arxiv.org/pdf/1409.0473.pdf moins l.
de
environnemenlt. I

<end>. H




Visualizing attention

Encoder

Decoder




Multi-head attention

* Having more than one attention heads




Self-attention

* Using attention layers without feedback from decoder.

)

* Without feedback the attention performs,

= temporal relevance weighting of the input time-series (hidden layer
representations).




Issues 1n RNNs/LSTMs

* Issues of long-term dependency
= LSTMs have partial solutions
* Back propagation through time
= Does not allow parallelism in forward pass or backward pass.
= Significant increase 1n training time as well as in forward propagation.

* Question - can we use attention mechanism itself to build temporal
dependencies without recurrence.




Transformers

* Encoder Decoder architecture
based models.

* Uses only feed forward

architectures with self-attention.

= Multi-head self attention.

* All the encoder layers and the
decoder layers have the same
set of operations.

Input




Transtormers - encoder

* Let x(1)...x('T") denote the input and let e’ (1) ..e’ (T) denote
encoder outputs at layer l.

EP—! = Layernarm(:ep_l(1)...ep_1(T):)T c RY P

gp) _ E(p_l)ng’Q) 4 1b§Lp,Q)T c RT*d.

Kﬁlp) _ E(p—l)wgpaK) 4 lbgp’K)T c RTxd,
V’(lp) - E(p—l)W}(Lp,V) _|_ lbgp,V)T c RTXd’

AP — QPK® ¢ RTXT




Transtormers - encoder

* Let x(1)...x('T") denote the input and let e’ (1) ..e’ (T) denote
encoder outputs at layer l.

E(p.SA) _ [Cgp) . Cg)]w(no) 1+ 1pPDT c RT*D

E(P54) — LayerNorm(E(®P~1) 4 E(®54)) ¢ RTXD,




