E9: 309 Advanced Deep Learning 21-10-2020

Instructor: Sriram Ganapathy sriramg@iisc.ac.in

Teaching Assistant: Akshara Soman, Prachi Singh, Jaswanth Reddy aksharas@iisc.ac.in, prachis@iisc.ac.in, jaswanthk@iisc.ac.in

http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/

Recap of previous class

State of affairs

- * LSTM models
- * Bidirectional RNNs
- * Seq2vec and vec2Seq models
- * Encoder-decoder models.

* Multiple input multiple output (with different label index) - Seq2seq

* Encoder — convert sequence $\mathbf{x} = \{\mathbf{x}(1), ..., \mathbf{x}(T)\}$ to vector

$$\mathbf{h}(t) = f(\mathbf{h}(t-1), \mathbf{x}(t))$$

$$\mathbf{e} = f'(\mathbf{h}_1, ..., \mathbf{h}_T)$$

- * The encoder can have multiple deep RNN layers.
- * For simplicity

$$\mathbf{e} = \mathbf{h}_T$$

- * Encoder convert sequence $\mathbf{x} = \{\mathbf{x}(1), ..., \mathbf{x}(T)\}$ to vector e
- * Decoder converts the vector embedding from the encoder to the output sequence $\hat{y} = \{\hat{y}(1), ..., \hat{y}(S)\}$ with different label index.

$$p(\hat{\mathbf{y}}) = \prod_{s=1}^{S} p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1), ..., \hat{\mathbf{y}}(s-1))$$

* RNN decoder assumption

$$p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1),...,\hat{\mathbf{y}}(s-1)) = p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(s-1),\mathbf{e}) = softmax(\mathbf{V}\hat{\mathbf{y}}(s-1) + \mathbf{Rc}(s-1) + \mathbf{Te} + \mathbf{d})$$
$$\mathbf{c}(s) = f(\mathbf{c}(s-1),\mathbf{e})$$

* The decoder can also have multiple layers of deep RNNs before softmax.

- * Encoder convert sequences to vectors
- * Decoder converts the vector embedding from the encoder to the output sequence with different label index.
 - ✓ Start and end label are also encoded as output vector indices.
 - * Enable the starting and ending of the output sequence.
- * Assumption
 - ✓ The entire input sequence can be represented as a single vector e
 - * May not be able to perform this efficiently for long sequences.

* Modification of encoder-decoder model

$$p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1),...,\hat{\mathbf{y}}(s-1)) = p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(s-1),\mathbf{e}) = softmax(\mathbf{V}\hat{\mathbf{y}}(s-1) + \mathbf{Rc}(s-1) + \mathbf{Te} + \mathbf{d})$$

$$p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1),...,\hat{\mathbf{y}}(s-1)) = p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(s-1),\mathbf{e}(s)) = softmax(\mathbf{V}\hat{\mathbf{y}}(s-1) + \mathbf{Rc}(s-1) + \mathbf{Te}(s) + \mathbf{d})$$

* where

$$\mathbf{e}(s) = \sum_{t=1}^{T} \alpha(s, t) \mathbf{h}(t)$$

* Here lpha(s,t) captures the contribution of input at time t with output at time s

- * Obtaining the relative contribution $\alpha(s,t)$
 - ✓ Implementing this automatically using network-in-network

Attention network

$$\mathbf{c}(s-1)$$
 $\mathbf{h}(t)$

$$\hat{\alpha}(s,t) = \mathbf{A}[\mathbf{c}(s-1);\mathbf{h}(t)]$$

$$\alpha(s,t) = S(\hat{\alpha}(s,t)) = \frac{exp(\hat{\alpha}(s,t))}{\sum_{t'} exp(\hat{\alpha}(s,t'))}$$

 \checkmark The values $\alpha(s,t)$ are called attention weights.

Visualizing attention

Visualizing attention

Encoder hidden state

Je

hidden state #1

suis

hidden state #2

étudiant

hidden state #3

Analysis of attention networks

- * Attention weights $\alpha(s,t)$
 - √ Probability of linking (attending) to input at t for generating output at s
 - ✓ Useful in analyzing the internal structure of the encoder-decoder model

Visualizing the attention weights

Reading Assignment - "Neural Machine Translation by Jointly Learning to Align and Translate" https://arxiv.org/pdf/1409.0473.pdf

Analysis of attention networks

- * Attention weights $\alpha(s,t)$
 - ✓ Probability of linking (attending) to input at t for generating output at s
 - ✓ Useful in analyzing the internal structure of the encoder-decoder model

Visualizing the attention weights

Reading Assignment - "Neural Machine Translation by Jointly Learning to Align and Translate" https://arxiv.org/pdf/1409.0473.pdf

Visualizing attention

Multi-head attention

* Having more than one attention heads

$$e(s) = [e_1(s); ...; e_H(s)]$$

Self-attention

* Using attention layers without feedback from decoder.

- * Without feedback the attention performs,
 - → temporal relevance weighting of the input time-series (hidden layer representations).

Issues in RNNs/LSTMs

- * Issues of long-term dependency
 - → LSTMs have partial solutions
- * Back propagation through time
 - → Does not allow parallelism in forward pass or backward pass.
 - Significant increase in training time as well as in forward propagation.
- * Question can we use attention mechanism itself to build temporal dependencies without recurrence.

Transformers

- * Encoder Decoder architecture based models.
- * Uses only feed forward architectures with self-attention.
 - → Multi-head self attention.
- * All the encoder layers and the decoder layers have the same set of operations.

Transformers - encoder

* Let $\mathbf{x}(1)...\mathbf{x}(T)$ denote the input and let $\mathbf{e}^l(1)...\mathbf{e}^l(T)$ denote encoder outputs at layer l.

$$\tilde{\mathbf{E}}^{p-1} = Layernorm([\mathbf{e}^{p-1}(1)...\mathbf{e}^{p-1}(T)])^T \in \mathcal{R}^{T \times D}$$

$$\begin{aligned} \mathbf{Q}_h^{(p)} &= \bar{\mathbf{E}}^{(p-1)} \mathbf{W}_h^{(p,Q)} + \mathbf{1} \mathbf{b}_h^{(p,Q)\top} \in \mathbb{R}^{T \times d}, \\ \mathbf{K}_h^{(p)} &= \bar{\mathbf{E}}^{(p-1)} \mathbf{W}_h^{(p,K)} + \mathbf{1} \mathbf{b}_h^{(p,K)\top} \in \mathbb{R}^{T \times d}, \\ \mathbf{V}_h^{(p)} &= \bar{\mathbf{E}}^{(p-1)} \mathbf{W}_h^{(p,V)} + \mathbf{1} \mathbf{b}_h^{(p,V)\top} \in \mathbb{R}^{T \times d}, \end{aligned}$$

$$\mathbf{A}_h^{(p)} = \mathbf{Q}_h^{(p)} \mathbf{K}_h^{(p)}^{\top} \in \mathbb{R}^{T \times T}$$

Transformers - encoder

* Let $\mathbf{x}(1)...\mathbf{x}(T)$ denote the input and let $\mathbf{e}^l(1)...\mathbf{e}^l(T)$ denote encoder outputs at layer 1.

$$\hat{\mathbf{A}}_h^{(p)} = \operatorname{Softmax}\left(\frac{\mathbf{A}_h^{(p)}}{\sqrt{d}}\right) \in \mathbb{R}^{T \times T}. \quad \mathbf{C}_h^{(p)} = \hat{\mathbf{A}}_h^{(p)} \mathbf{V}_h^{(p)} \in \mathbb{R}^{T \times d}.$$

$$\mathbf{C}_h^{(p)} = \hat{\mathbf{A}}_h^{(p)} \mathbf{V}_h^{(p)} \in \mathbb{R}^{T \times d}$$
.

$$\mathbf{E}^{(p,\mathrm{SA})} = [\mathbf{C}_1^{(p)} \cdots \mathbf{C}_H^{(p)}] \mathbf{W}^{(p,O)} + \mathbf{1} \mathbf{b}^{(p,O)\top} \in \mathbb{R}^{T \times D}$$

$$\bar{\mathbf{E}}^{(p,\mathrm{SA})} = \mathrm{LayerNorm}(\bar{\mathbf{E}}^{(p-1)} + \mathbf{E}^{(p,\mathrm{SA})}) \in \mathbb{R}^{T \times D}$$

